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Abstract 

Unlike many teleosts, the estuarine killifish, Fundulus heteroclitus (mummichog), 

does not demonstrate a shift from estrogens (such as 17β-estradiol; E2) to progestogens 

(such as maturation inducing steroid; MIS) during ovarian development. While these 

hormonal changes associated with ovarian development have been previously described 

in mummichog, the primary focus of the current study was to extend those studies by 

investigating whether these hormonal patterns are associated with changes in gene 

expression within the steroidogenic pathway. Blood (plasma), ovary (tissue and ovarian 

follicles), liver, and brain were collected from female mummichog at various stages of 

maturation, classified as cortical alveolus, vitellogenic, early mature, late mature, and 

ovulating. Testosterone (T), E2 and MIS, measured from plasma and in vitro ovarian 

follicle incubations, confirmed that T and E2 production correlate with vitellogenesis and 

final maturation in mummichog, whereas MIS correlates with only final maturation, 

further establishing the lack of an E2 drop prior to maturation. To determine patterns in 

mummichog steroidogenic and hormone signalling pathways, gene expression of ovarian 

StAR (steroidogenic acute regulatory protein), cytochrome P450 enzymes, estrogen 

receptors (ERs), and gonadotropin receptors, along with hepatic vitellogenin (VTG1) and 

ERs, and brain P450 aromatase (P450arom; CYP19b), were determined by qPCR across 

ovarian development. The expression of P450arom (CYP19a1; converts T to E2), ERα, 

StAR (initiates cholesterol transport), P450scc (P450 side chain cleavage; converts 

cholesterol into pregnenolone), and hepatic VTG1 are associated with patterns of E2 

levels in maturing mummichog as expression remained continuously high or increased 

into late maturation; however, these genes did not follow trends exhibited in other 
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teleosts. CYP17 expression (converts pregnenolone to 17α-hydroxypegnenolone and then 

dehydroepiandrosterone, or converts progesterone to 17α-hydroxyprogesterone and then 

androstenedione) was not associated with E2 patterns in mummichog, or other teleosts; 

expression decreased across maturation in mummichog. The secondary focus of this 

thesis was to determine the effects of an exogenous estrogen (EE2; 17α-ethinyl estradiol) 

on maturing follicles. Although many teleost species exposed to environmentally-relevant 

concentrations (e.g., <10 ng/L EE2) in vivo respond with a decrease in egg production and 

reproductive steroid levels, mummichog do not exhibit similar effects at much higher 

concentrations (e.g., >100 ng/L EE2). Ovarian follicles (cortical alveolus, vitellogenic, 

early mature, and late mature) were exposed in vitro to 50 – 250 nM of EE2 in vitro for 

24 hours. While other studies have suggested that ovarian LHr and P450arom expression 

are estrogen-responsive in fish, addition of EE2 in vitro had no effect; T and MIS 

production were also unaffected. Overall, these studies confirm high levels of follicular 

E2 across maturation, accompanied by increasing or continuously high expression of 

ovarian ERα, StAR, P450scc, and P450arom, hepatic VTG1 and brain P450arom in 

maturing fish. The tolerance exhibited by mummichog to exogenous estrogens could be 

partially attributable to continuously high levels of E2 present in the maturing ovary, as 

EE2 during follicular incubations has no effect on presumed E2-responsive genes. 
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1.0 Introduction 

This thesis is focused on characterization of aspects within the reproductive 

endocrine system during ovarian development in the estuarine killifish, Fundulus 

heteroclitus (mummichog). In previous studies, ovarian E2 (17β-estradiol) during 

maturation was observed to be regulated differently than in other teleosts. This difference 

is explored in the context of mummichog’s relative insensitivity to exogenous estrogen 

exposure in comparison to other fish species. Chapter one provides an overview of the 

fish reproductive endocrine system in general, and the mummichog system in particular. 

Chapter two describes the experimental work undertaken for the thesis in manuscript 

format. Chapter three is a summary including a description of the integrative nature of the 

work. 

1.1 Female Fish Reproductive Physiology 

In the classical definition, endocrine glands secrete chemical messengers 

(hormones) directly into the circulatory system, to be transported to a target organ; the 

hormones control responses such as growth, reproduction, and metabolism (Rushton, 

2009). Reproductive processes and strategies have evolved extensively among fish 

(Miller and Kendall, 2009), and are controlled and regulated by a balance and 

interconnectivity among the hormones of the hypothalamus, pituitary and gonads, 

referred to as the hypothalamus-pituitary-gonadal (HPG) axis (Ramezani-Fard et al., 

2013). Gonadal hormones control reproductive processes such as spawning, 

spermatogenesis (production of sperm), and oogenesis (production of eggs) (Miller and 

Kendall, 2009).  
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1.1.1 The Hypothalamus-Pituitary-Gonadal (HPG) Axis (Overview) 

The HPG axis controls reproduction in fish, through the development of 

reproductive tissues and coordination of complex processes that occur during the annual 

reproductive cycle (Figure 1.1) (Thomas, 2008). The brain facilitates the release of 

gonadotropin-releasing hormones (GnRHs) (Yu et al., 1997). The GnRHs are tropic 

peptide neurohormones produced in the neurons of the hypothalamus, which are released 

from their neural terminals to stimulate the release of gonadotropin hormones (GtH), 

from gonadotropes of the pituitary (Parhar et al., 2002; Zohar et al., 1995). Binding of 

GnRH to specific receptors on the plasma membrane of gonadotrope cells in the pituitary 

causes the activation of intracellular signaling pathways, which regulate the release of 

gonadotropins from storage (Thomas, 2008). The pituitary gland is able to facilitate 

reproduction in fish by using a dual GtH system: FSH (follicle stimulating hormone) and 

LH (luteinizing hormone), which are produced in two distinct gonadotropes of the 

pituitary (Ohkubo et al., 2013).  
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Figure 1.1. Stimulatory processes in the hypothalamus-pituitary-gonadal (HPG) axis. 

Descriptions of the processes can be found in sections 1.1.1 and 1.1.2. A primary role of 

FSH is to stimulate E2 production, and a primary role of LH is to stimulate MIS 

production. (Modified from Clelland and Peng, 2009.) 

1.1.2 Gonadotropin, Steroid and Vitellogenin Regulation  

FSH and LH are glycoprotein hormones consisting of both an alpha subunit and a 

beta subunit; the beta subunit is unique for each gonadotropin (Ohkubo et al., 2013). In 

female fish, FSH and LH are released into the bloodstream and then bind to their 

respective cell surface ovarian receptors (FSHr and LHr) (Ohkubo et al., 2013). FSHr and 

LHr activation stimulates gonadal functions, including the synthesis and release of certain 

steroid hormones involved in reproduction (Evans, 1999; Peter and Yu, 1997; Wang and 

Ge, 2004). It was first determined in coho salmon, Oncorhynchus kisutch, that FSH is 
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primarily involved in regulating gonadal steroidogenesis in the early ovarian 

developmental stages, especially during vitellogenesis (Swanson et al., 1991; Ohkubo et 

al., 2013). During vitellogenesis, vitellogenin (a female-specific lipoprotein) is 

synthesized in the liver under the stimulation of ovarian 17β-estradiol (E2), and is 

secreted into the blood and transported to the ovary where it is taken up into the oocytes 

to stimulate egg yolk protein production during development of the oocyte (Hoar et al., 

1983). FSH’s dominant role in vitellogenesis is to stimulate E2 production and release 

from ovarian follicles into the bloodstream (Nagahama and Yamashita, 2008). In teleosts, 

E2 plays a crucial role in sexual differentiation, gonadal development and steroidogenesis 

(the synthesis of steroids) during the reproductive cycle (Menuet et al., 2005). E2 also 

influences pituitary gonadotrope activity, which will in turn control the gonads through 

the synthesis of gonadotropins (Menuet et al., 2005).  

LH’s primary function, on the other hand, is to regulate the final stages of ovarian 

development and spawning (Breton et al., 1998; Tyler et al., 1997), partially due to its 

ability to stimulate 17α, 20β-dihydroxy-4-pregnen-3-one (17α, 20β-P), or maturation 

inducing steroid (MIS), production from the granulosa cell layer of the ovarian follicle 

(Figure 1.1; Clelland and Peng, 2009; Nagahama and Yamashita, 2008). In most teleosts, 

17α, 20β-P is the most effective steroid in the induction of GVBD (germinal vesicle 

breakdown) which occurs once a follicle is mature (Nagahama, 1983; Nagahama, 1994). 

MIS is responsible for inducing resumption of meiosis in teleost oocytes (Nagahama and 

Yamashita, 2008). The mechanism of MIS activity involved in oocyte maturation 

involves a complex interaction between oocyte MIS receptors and signal transduction 

pathways via inhibitory G-proteins (Nagahama and Yamashita, 2008). The MIS signal 



www.manaraa.com

6 
 

induces the formation of maturation-promoting factor (MPF) and further induces GVBD 

and oocyte maturation (Nagahama and Yamashita, 2008). 

1.1.3 Estrogen Receptor Activity 

The principal mediator of E2 activity is the nuclear estrogen receptor (Marino et 

al., 2006). Analyzing estrogen receptor activity furthers our understanding of how E2 is 

regulated and how it is involved in other signaling pathways. The activation of steroids, 

such as estradiol, can occur by both nuclear and membrane receptors. With membrane 

receptors, the steroid binds to receptors on the cell surface, resulting in activation of ion 

channels or intercellular secondary messengers (Thomas, 2008). With nuclear receptors, 

steroids bind to the hormone response elements on a gene and alter their transcription 

rates (Thomas, 2008). The gene expression of nuclear receptors is regulated by steroid 

hormones, so expression rates will fluctuate in response to changes in steroidogenesis 

(Thomas, 2008). The genomic effects of E2 are mediated by specific nuclear receptors 

(ERs), which are able to modulate specific gene activity by acting as ligand-dependent 

transcription factors; when receptors are bound to the dependent ligand, the target genes 

will be activated (Menuet et al., 2002). In teleosts, two ER subtypes have been identified: 

ERα and ERβ; there are two distinct forms of ERβ: ERβ1 and ERβ2 (Menuet et al., 

2002).  

1.2 Steroidogenesis 

Hormones are derived from cholesterol in the process known as steroidogenesis 

(Figure 1.2), which involves a number of intermediates and enzymatic conversions prior 

to their release from the gonads (Arukwe, 2008; Leusch and MacLatchy, 2003; Young et 

al., 2005). The synthesis of the different classes of gonadal steroids depends on the 
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delivery of the substrate cholesterol, and its conversion by three enzymes belonging to 

the cytochrome P450 superfamily (Young et al., 2005). Steroidogenic acute regulatory 

protein (StAR) is a sterol transport protein which initiates cholesterol transport into the 

mitochondria (Rone et al., 2009). Cytochrome P450 side-chain cleavage (P450 scc) is 

located at the inner mitochondrial membrane and converts cholesterol to pregnenolone 

(Young et al., 2005). Pregnenolone is a basal steroid that can serve as a substrate for 

cytochrome P450 C17; P450 C17 can catalyze the hydroxylation of pregnenolone to yield 

17α-hydroxypregnenolone and then dehydroepiandrostone, or the hydroxylation of 

progesterone to yield 17α-hydroxyprogesterone (17α-HP) and then androstenedione 

(Young et al., 2005). Testosterone (T) is created from the conversion of androstenedione 

with the enzyme 17β-HSD (HSD: hydroxysteroid dehydrogenase), which is later 

converted into 11-ketotestosterone (11-KT) in males. The synthesis of estrogens depends 

on cytochrome P450 aromatase (P450arom), which uses T as a substrate for conversion 

into E2; changes to P450arom are responsible for the drop in estrogen levels that can 

occur in many teleosts prior to maturation (Young et al., 2005). During the maturation of 

oocytes, post-vitellogenic follicles have to synthesize a large amount of MIS (Arukwe, 

2008). MIS is produced from the conversion of 17α-hydroxyprogesterone to 17α, 20β-P, 

with the enzyme 20β-HSD, which is believed to be initiated with a surge in LH 

production (Barry et al., 1990; Young et al., 2005).  
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Figure 1.2. The steroidogenic pathway, responsible for the production of sex steroids 

such as MIS, T and E2 from cholesterol through multiple enzymatic reactions as 

explained in section 1.2. (Modified from Young et al., 2005). 
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1.3 The Ovarian Development Cycle 

Ovarian development in teleosts varies from species to species, in both the 

duration of the cycle as well as the mechanisms involved in regulating the cycle; the 

duration of the cycle in fish can vary from a few days to a few years (Khan and Thomas, 

1999). Oocyte maturation is the process whereby ovarian follicles develop (with an 

enormous growth of oocytes due to accumulation of yolk proteins in cytoplasm) and 

become mature (including germinal vesicle breakdown, chromosome condensation, 

assembly of the meiotic spindle and formation of the first polar body) prior to ovulation, 

which is required for successful fertilization (Nagahama and Yamashita, 2008). 

Oogenesis (oocyte maturation) can be described in six major steps: formation of PGCs 

(germline segregation), transformation of PGCs into oogonia (sex differentiation), 

transformation of oogonia into oocytes (onset of meiosis), growth of oocytes while under 

meiotic arrest, resumption of meiosis (maturation), and expulsion of the ovum from its 

follicle (ovulation) (Patino and Sullivan, 2002).  

The ovarian follicle, which surrounds each oocyte, consists of two major cell 

layers: an outer thecal cell layer and an inner granulosa cell layer (Figure 1.3; Clelland 

and Peng, 2009). As oocytes grow, follicle cells multiply and form a continuous follicular 

layer (granulosa cell layer); the follicular layer changes in order to support, nourish and 

regulate oocyte development in a continuous manner (Nagahama, 1994). In teleosts, 

growth and development of ovarian follicles are dependent on the actions of 

gonadotropin FSH and the steroid E2; whereas maturation of ovarian follicles is regulated 

by gonadotropin LH and the steroid MIS (Nagahama and Yamashita, 2008). In the two-

cell type model, the thecal cell layer will secrete androgen substrates, such as T and 17α-
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HP, while under the influence of gonadotropins. In the granulosa cells, 17α-HP and 

testosterone will be converted into MIS and E2 (Nagahama and Yamashita, 2008; 

Yamashita et al., 1995). In this model, prior to ovulation, E2 levels decrease and allow for 

significantly increased levels of MIS, which is required to complete maturation of the 

oocyte (Nagahama and Yamashita, 2008). Human chorionic gonadotropin (hCG) is used 

in experimental studies of ovarian development, as it is effective in inducing in vitro, and 

sometimes in vivo, oocyte maturation and ovulation in some teleosts; hCG mimics LH 

activity (Harvey and Hoar, 1979; Zuberi et al., 2011). 

The stages of oogenesis in commonly-studied teleosts, e.g., zebrafish (Danio 

rerio), are generally divided into growth/developmental stages and maturational stages 

(Figure 1.4). The developmental stages of oogenesis encompass the primary growth, 

cortical alveolus, and vitellogenic stage, and are predominatly regulated by increasing 

levels of E2 and FSH. During primary growth (prior to stage 1), oocytes begin to grow in 

size while the germinal vesicle (GV; oocyte nucleus) appears in the center of the oocyte, 

and a single layer of follicle cells surrounds the oocyte, eventually forming a vitelline 

envelope (Lyman-Gingerich and Pelegri, 2007). Stage 1 (cortical alveolus) is when the 

cortical alveoli (bound vesicles) appear in the ooplasm and the vitelline membrane 

contains three separate layers which surrounds the oocyte (Lyman-Gingerich and Pelegri, 

2007). Stage 2 (vitellogenesis) is when oocytes undergo vitellogenesis and acquire large 

amounts of vitellogenin, displacing cortical alveoli to the cortex of the oocyte (Clelland 

and Peng, 2009; Lyman-Gingerich and Pelegri, 2007). Stages 3-5 are maturational stages, 

which are commonly initiated with the drop in E2 levels and rise in MIS and LH levels. 

The maturational stages of oogenesis allow for drastic morphological changes in 
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accordance with the progression of meiosis, and allow for GVBD as well; the GV, which 

is usually located in the center of the oocyte, migrates to the animal pole with hormonal 

stimulation, where GVBD can occur (Suwa and Yamashita, 2007). Stage 3 (early 

maturation) is when oocytes are able to respond to LH, secreted from the pituitary, and 

MIS, synthesized and secreted from the follicle following MPF (maturation promoting 

factor) stimulation (Yamashita, 2000). Stage 4 (late maturation) is when the germinal 

vesicle migrates from the center of the oocyte to the periphery and the nuclear membrane 

breaks down (Selman et al., 1993). Stage 5 (ovulated) is when mature eggs are ovulated 

(oocyte is released from follicle complex and are ready for spawning; Lyman-Gingerich 

and Pelegri, 2007). 
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Figure 1.3. The two-cell type model in teleost oocytes. Major hormones, E2 (17β-

estradiol), MIS (maturation inducing steroid), T (testosterone) and17α-HP (17α-

hydroxyprogesterone), involved in oocyte growth and maturation outlined in the two 

layers (theca and granulosa) of the oocyte are shown. Descriptions of these processes can 

be found in section 1.3. (Modified from Clelland and Peng, 2009). 

 

Figure 1.4. Stages of ovarian development in commonly-studied teleosts with a two-cell 

type model, which are regulated by processes as explained in section 1.3 and Figure 1.3, 

separated by oocyte development and oocyte maturation stages. Primary growth stage = 

prior to stage 1; stage 1 = cortical alveolus stage; stage 2 = vitellogenic stage; stage 3 = 

early maturation stage; stage 4 = late maturation stage; stage 5 = ovulated stage. 

Germinal vesicle (GV) breakdown occurs when oocytes become fully mature in stage 4. 

Regulation of hormones E2 (17β-estradiol) and MIS (maturation inducing steroid) are 

depicted with relative increasing and decreasing arrows. (Modified from Selman et al., 

1993).  
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In mummichog, however, thecal cells (endocrine cells which play an essential 

role in producing androgen substrate required for ovarian estrogen biosynthesis 

(Magoffin, 2005)) are not evident in the thecal layer (Nagahama, 1994). In mummichog, 

granulosa cells are the major site of steroid synthesis, and respond to mummichog 

pituitary extract in vitro (Petrino et al., 1989). The production of E2 and 17,20β-P does 

not require the involvement of two cell types (Petrino et al., 1989). Petrino et al. (1989) 

also concluded that 17, 20β-P plays a major role as a maturation inducing steroid in 

mummichog, even though it is not the only active steroid produced by maturing follicles 

(as E2 production remains high).  

1.3.1 Shift in Steroidogenesis Prior to Oocyte Maturation 

In most teleost ovarian development processes studied to date, there is a shift that 

occurs between the developmental stages and maturational stages in the ovarian 

development cycle; a shift from estrogenic to progestational steroid production when 

follicles progress from vitellogenesis to a prematurational stage (Nagahama and 

Yamashita, 2008). As mentioned earlier, E2 (regulated by FSH) is produced in correlation 

with vitellogenesis; whereas MIS (regulated by LH) is produced in correlation with the 

onset of maturation of oocytes. It has been demonstrated in several teleost fish that the 

steroid 17α, 20β-P (MIS) is the most effective steroid in stimulating oocyte maturation 

(Nagahama, 1983; Nagahama, 1987). In goldfish, Carassius auratus, E2 production 

reduces greatly in the prematurational stage when compared to vitellogenic follicles 

(Kagawa et al., 1984). Maximal production levels of T were reported in the tertiary yolk 

stage follicles with hCG (LH analogue) stimulation (Kagawa et al., 1984In coho salmon, 
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the concentration of E2 was reduced while the production of T and MIS increased with 

advancing oocyte development (Van Der Kraak and Donaldson, 1986).  

In mummichog, however, there is no shift detected as the levels of E2 are 

consistently high in all stages of follicles (Lin et al., 1987). Ultimately, high levels of E2 

coexist with high progestagen levels in mummichog (Lin et al., 1987). Lin et al. (1987) 

also demonstrated that mummichog gonadotropins show a noticeable species specificity, 

as mummichog follicles exhibit both a seasonal and size dependent responsiveness to 

gonadotropins; the steroidogenic responses of mummichog ovarian follicles were found 

to be very dependent on the stage of follicular development.  

1.4 Endocrine Disrupting Compounds   

There are numerous natural and anthropogenic chemicals discharged into 

freshwater and estuarine systems that are capable of disrupting the endocrine systems of 

aquatic organisms (Sumpter, 2005).  Endocrine-disrupting chemicals (EDCs) have been 

defined by the World Health Organization’s International Programme on Chemical 

Safety (2002), as: “an exogenous substance which alters function(s) of the endocrine 

system and ultimately causes adverse health effects in an organism, its offspring or (sub) 

populations.” EDCs have the potential to disturb sensitive hormone pathways that 

regulate growth and reproductive functions in aquatic organisms (Arcand-Hoy and 

Benson, 1998).  

 Fish are primary targets for waterborne endocrine disruptors, many of which are 

xenostrogens (synthetic or natural estrogen-mimicking or –blocking compounds) 

(Menuet et al., 2005), making the impact of xenostrogens on aquatic ecosystems and fish 

a subject of great interest. Reports of reproductive problems in North American and 
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European freshwater and marine fish populations have sparked a wave of research, and 

raised awareness on the potential risks of EDCs to human and environmental health 

(Diamanti-Kandarakis et al., 2009; UNEP/WHO, 2013). The feminization of male fish 

due to exogenous estrogen exposure has been demonstrated in several studies such as in 

Kidd et al.’s (2007) whole-lake study with fathead minnow (Pimephales promelas), 

which showed feminization in males following exposure to 5-6 ng/L of 17α-ethinyl 

estradiol (EE2), and ultimately a near extinction of the species studied from the lake. 

Schwindt et al. (2014) suggested that fish populations exposed to environmentally-

relevant EE2 concentrations may not recover from exposure, and recommended improved 

wastewater processing technology to improve removal of bioactive chemicals such as 

environmental estrogens. Understanding the mechanisms of action for xenostrogens is an 

important step in evaluating the impact of these substances on fish reproductive 

physiology, and of assessing risk to fish populations in vulnerable ecosystems 

(UNEP/WHO, 2013).  

1.4.1 EE2: 17α-Ethinyl Estradiol 

The synthetic steroid EE2 (Figure 1.5A), is one of the most commonly-used active 

ingredients for oral contraception and related medicines (Lange et al., 2001). Estrogenic 

EDCs (including estrone, E2, estriol, and EE2) have been shown to enter the aquatic 

environment via effluent discharges from sewage treatment works (Sun et al., 2014). The 

hormones present in pharmaceuticals (including synthetic estrogens) are not completely 

broken down through municipal wastewater sewage treatment plants (Ternes et al., 

1999). The chemical structure of EE2 differs slightly from the chemical structure of the 

natural estrogen, E2 (Figure 1.5B), by an additional ethinyl group in EE2; this difference 
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leads to changes in biodegradability, making EE2 more resistant to degradation of 

microorganisms in wastewater treatment systems (Ternes et al., 1999). As a result, 

wastewater effluent from municipal treatment plants discharge EE2 into receiving waters 

in both treated and untreated waste waters, and can be found at 0 to 34 ng/L in different 

bodies of water (rivers, estuaries, bays, lagoons, surface water, etc) internationally, as 

well as in sediments within those bodies of water (Aris et al., 2014; Monteiro and Boxall, 

2010). Compounding their reproductive effects, EE2 levels are a concern in aquatic 

environments because of EE2’s high resistance to the process of degradation and its 

tendency to absorb organic matter, accumulate in sediment and concentrate in biota (Aris 

et al., 2014; De Wit et al., 2010). Effluents from municipal wastewater contain mixtures 

of various estrogens and their mimics, varying in toxicity (Desbrow et al., 1998). Within 

this group of substances, EE2 is one of the more potent synthetic estrogens present, and 

has been linked to serious effects on fish development and reproductive status (Desbrow 

et al., 1998).  

 

A 
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Figure 1.5: The chemical structure of the synthetic estrogen, 17α-ethinylestradiol (EE2; 

A), and the natural estrogen, 17β-estradiol (E2; B) (Sigma-Aldrich, 2015). 

1.4.2 Effects of EE2 on Teleosts 

 It has been demonstrated that EE2 can negatively impact the reproductive system 

and related processes in several teleosts. These effects on the reproductive status and 

development of fish can have detrimental long-term effects on fish populations, which 

can also impact the ecosystem. Mummichog, however, typically respond at higher 

concentrations of EE2 (generally 100 ng/L or higher) compared to the levels (<10 ng/L) 

to which other fish respond. For instance, this can be seen when comparing population 

and reproductive health effects between commonly-studied freshwater teleosts and 

mummichog. EE2 exposure caused intersex (feminization) and induced vitellogenin 

(female egg yolk precursor protein) production in fathead minnow at 5-6 ng/L of EE2 

during a 7-year whole-lake experiment (Kidd et al., 2007), and in zebrafish when 

exposed to 5 ng/L EE2 in a full lifecycle exposure (Nash et al., 2004). Parrott and Blunt 

(2005) demonstrated significant effects on fathead minnow fertilization success, sex ratio, 

male secondary sex characteristics, GSI (gonadal somatic index), LSI (liver somatic 

index) and growth at 0.32-23 ng/L EE2 (nominal), or 0.0-1.5 ng/L of EE2 after RIA 

B 
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(radioimmunoassay) detection, 150 days post hatch. In mummichog, reproductive 

endpoints do not appear to be affected at similar concentrations of EE2, when compared 

to other teleosts. In mummichog, induced male plasma vitellogenin and vitellogenin 

mRNA has been demonstrated at higher concentrations of 100 ng/L EE2, after 21-day and 

14-day (respectively) exposures (Hogan et al., 2010; Peters et al., 2007). However, EE2-

treated mummichog larvae showed complete feminization (all treated larvae exhibited 

female phenotype) at 10 weeks post hatch, including a low exposure concentration of 10 

ng/L (Chehade, 2012), similar to effects in other species. 

Reproduction is impacted by EE2 exposure in teleosts, as egg production was 

significantly reduced in fathead minnow at concentrations of 0.47-3.92 ng/L after a 21-

day exposure (Armstrong et al., 2016). Other freshwater species such as Chinese rare 

minnow (Gobiocypris rarus) exposed to 0.2 ng/L EE2 (Zha et al., 2008) and zebrafish 

exposed to 1 ng/L EE2 (Lin and Janz, 2006) or 25 ng/L for seven days (Schilling, 2015) 

exhibited significantly reduced egg production. EE2 does not have such a consistent low-

concentration effect on reproduction in mummichog, as egg production decreased in 

females and fertilization decreased in males at only 100 ng/L, as assessed at 28 days 

(Peters et al., 2007). A study by Bosker et al. (2016), has further shown that the 

cumulative egg production per female was unaffected by high concentrations of EE2 at 

100 ng/L (nominal), or 84.1 ng/l ± 6.0 actual, after 28 days of exposure. 

EE2’s strong impacts on fish reproduction may be mediated by effect on sex 

steroids that regulate reproductive processes. In fish, estrogen mimics compete with 

naturally-occurring estrogen for binding to the estrogen receptors and disrupt the 

steroidogenic pathway, which can consequently depress plasma hormone levels (Hogan 
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et al., 2010). Hormones T, 11-KT and E2 were notably lower in male fathead minnow 

after exposure to 10 ng/L EE2 for 21 days (Salierno and Kane, 2009). In mummichog, 

some hormones were affected by EE2 at high (e.g., 100 ng/L) concentrations. Female 

plasma T and E2 significantly decreased after exposure to EE2 at 100 ng/L for 21 days; 

plasma E2 also decreased at 10 ng/L EE2 after 28 days (Peters et al., 2007). Hogan et al. 

(2010) demonstrated different effects, as male and female plasma T levels did not differ 

significantly among treatments of 100 and 500 ng/L (nominal) of EE2 for 14 days, or 67.9 

± 7.4 and 247.9 ± 12 (average) ng/L. Gillio Meina et al. (2013) demonstrated decreases 

in female E2 and male 11-KT at 250 ng/L EE2. These data substantiate the general trend 

of EE2 effects on mummichog at higher than environmental levels, unlike what has been 

found in most other fish species studied. 

EDCs have been shown to exert direct effects on gonadal steroidogenesis in 

teleosts through various mechanisms (Thomas, 2008). EDCs, such as exogenous 

estrogens, may disrupt the steroidogenic pathway by interfering with the gene expression 

of specific enzymes at key steps (Hogan et al., 2010). For instance, steroidogenic 

enzymes (P450scc, P450c17, and 3β-HSD) expression decreased with EE2 exposure (8 

days of oral treatment at 20 mg/kg) in rainbow trout (Baron et al., 2005). In fathead 

minnow, steroidogenic enzymes StAR, P450scc and P450c17 were downregulated with 

2-50 ng/L EE2; P450arom was not significantly altered, but showed a downward 

tendency (Garcia-Reyero et al., 2009). On the other hand, there was no effect on 

steroidogenic enzymes StAR, P450scc and P450arom in mummichog ovaries after a 14-

day exposure to 250 ng/L EE2 (Doyle et al., 2013).  
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1.4.3 Potential Mechanisms for High Sensitivity to EE2 in Mummichog 

The mechanistic reasons in mummichog for the differences in effects following 

EE2 exposure compared to other freshwater teleosts is not known. Previous studies have 

tried to determine the factors which cause lower sensitivity in mummichog by focusing 

on environmental and physiological variables. Environmental variables that have been 

investigated to some extent include salinity, temperature and hypoxia. Salinity was 

analyzed as mummichog live in estuarine environments with fluctuating salinity, and 

most fish commonly used in EE2 exposure studies are freshwater fish. Salinity increases 

EE2 uptake (Blewett et al., 2013), but has no significant effect on plasma steroids or 

gonadal steroidogenesis (Gillio Meina et al., 2013). Increased temperature results in 

greater EE2 uptake (Blewett et al., 2013). Increased temperature at 26oC, compared to 

10oC and 18oC, resulted in increased gonad weight in male and female mummichog and 

decreased LSI, yet there was no interaction between temperature and EE2 on either 

plasma E2 or T in females, or plasma T and 11-KT in males (Gillio Meina et al., 2013). In 

hypoxia, there is little change on the effect on EE2 uptake in mummichog (Blewett et al., 

2013).  

Tissue distribution of EE2 accumulation after exposure in mummichog has also 

been examined through a comparative study to other species. In mummichog, gallbladder 

and liver accumulated the largest amount of radiolabeled EE2 (50%); the carcass and the 

gut were the next highest accumulators (Blewett et al., 2014). Alternatively, EE2 was 

quickly associated with the carcass (50%) in fathead minnow, goldfish, zebrafish and 

rainbow trout (Blewett et al., 2014). This could indicate that EE2 is potentially being 

metabolized and cleared more quickly in mummichog compared to other teleosts, thus 
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protecting the reproductive system from deleterious effects of EE2. This hypothesis has 

not been further investigated and, to date, is the most evidence-based explanation for the 

differences in EE2 sensitivity between mummichog and other fish species. 

1.5 Objectives  

The hypothesis for this thesis is that the differences in E2 regulation during 

ovarian development between mummichog and other teleosts may play a part in the 

species-specific sensitivity of mummichog to EE2. In most teleosts, the shift between the 

developmental stages and maturational stages in oogenesis is accompanied by a shift 

from estrogenic (E2) to progestational (MIS) steroid production when follicles progress 

from vitellogenesis to a prematurational stage (Nagahama and Yamashita, 2008). These 

key steroids, such as E2, T and MIS regulate the ovarian development cycle. E2 is 

stimulated by FSH and is produced in correlation with vitellogenesis (involved in 

developmental stages); whereas MIS is stimulated by LH and is produced in correlation 

with the onset of maturation of oocytes (involved in maturational stages). In mummichog, 

however, there is no shift detected as the levels of E2 are consistently high in all stages of 

follicles and coexist with high progestagen levels in mummichog (Lin et al., 1987). 

Because mummichog have continuously high levels of E2 across maturation, this may 

cause a decrease in ovarian sensitivity to EE2, possibly through molecular pathways in 

the steroidogenic pathway. EDCs, such as EE2, have been shown to exert direct effects on 

gonadal steroidogenesis in teleosts through various mechanisms, and also potentially 

alters gonadal steroid production at specific sites within the steroidogenic pathway 

(MacLatchy et al., 2003; Hogan et al., 2010; Peters et al., 2007; Thomas, 2008). 

Therefore, the present study focused on the molecular characterization of the ovarian 
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steroidogenic pathway across the maturational stages in mummichog to firstly, better 

understand the molecular changes that occur during steroidogenesis and secondly, the 

effects of EE2 in vitro on maturing ovarian follicles.  

The approach used was to initially replicate and confirm the current 

understanding of mummichog maturation as it relates to ovarian steroidogenesis (e.g., 

changes in plasma and follicular steroids during maturation), and to then add to the body 

of knowledge by characterizing for the first time the gene expression changes across the 

ovarian development cycle, using in vitro ovarian follicle incubations. With this deeper 

mechanistic understanding of mummichog ovarian steroidogenesis, it was then possible 

to undertake a preliminary in vitro ovarian follicle exposure across maturational stages to 

EE2, to determine the effect on gene expression endpoints known to be estrogen sensitive 

in other teleost species. Together, these studies have progressed our understanding of 

mummichog ovarian development and provided a potential addition to the mechanistic 

understanding of the general resistance of mummichog to environmentally-relevant levels 

of EE2. 
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2.1 Abstract 

This study investigated ovarian development in Fundulus heteroclitus 

(mummichog), through molecular characterization of key mediators in the ovarian 

steroidogenic pathway; these included ovarian StAR (steroidogenic acute regulatory 

protein), cytochrome P450 enzymes, estrogen receptors (ERα, ERβ1 and ERβ2), and 

gonadotropin receptors (FSHr and LHr); additionally, hepatic vitellogenin (VTG1) and 

ERs, and brain P450 aromatase (P450arom; CYP19b) were studied. Fish were staged into 

cortical alveolus, vitellogenic, early mature, late mature, and ovulating stages of 

maturation; blood (plasma), ovary (tissue and isolated ovarian follicles per stage), liver, 

and brains were collected. Testosterone (T), 17β-estradiol (E2) and maturation inducing 

steroid (MIS), measured from plasma and in vitro ovarian follicle incubations, confirmed 

that T and E2 production correlate with vitellogenesis and final maturation in 

mummichog, whereas MIS correlates with only final maturation in mummichog; no E2, 

as is present in other teleosts, drop prior to maturation was observed. The expression of 

P450arom (CYP19a1), ERα, StAR, P450 side-chain cleavage, and hepatic VTG1, 

determined by qPCR methods, were associated with patterns of E2 in maturing 

mummichog, but did not follow patterns exhibited in other teleosts. CYP17 expression 

was not associated with E2 patterns in mummichog, or other teleosts. To determine EE2 

(17α-ethinyl estradiol) effects during maturation, follicles grouped per stage were 

exposed to 50 - 250 nM of EE2 in vitro for 24 hours; there was no effect on P450arom or 

LHr expression, or on T or MIS production. The tolerance exhibited by mummichog to 

exogenous estrogens in vitro could be partially attributable to continuously high levels of 
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E2 present in the maturing ovary, as EE2 during follicular incubations had no effect on 

presumed E2-responsive genes. 
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2.2 Introduction 

In most teleost ovarian development processes studied to date, there is a shift that 

occurs from estrogenic (17β-estradiol or E2) to progestational (maturation inducing 

steroid or MIS; 17α, 20β-dihydroxy-4-pregnen-3-one) steroid production when follicles 

progress from vitellogenesis to a prematurational stage (Nagahama and Yamashita, 

2008). E2 is produced in correlation with early developmental stages and rises during 

vitellogenesis (the process of vitellogenin synthesis in the liver, under the stimulation of 

E2, and uptake into the oocytes; Hoar et al., 1983), whereas MIS is produced in 

correlation with the onset of maturation of oocytes (Nagahama and Yamashita, 2008). 

MIS role in maturation is to induce resumption of meiosis and germinal vesicle 

breakdown (GVBD) in teleost oocytes (Clelland and Peng, 2009; Nagahama and 

Yamashita, 2008). In mummichog there is no progestagen shift; the levels of E2 are 

consistently higher in all stages of follicles tested and coexist with increasing progestagen 

during mummichog (Lin et al., 1987). Similar to other teleosts, MIS continues has a 

major role in maturation of mummichog (Petrino et al., 1989).  

Ovarian development in teleosts varies from species to species, in both the 

duration of the cycle as well as the mechanisms involved in regulating the cycle (Khan 

and Thomas, 1999). Selman and Wallace (1986) characterized five stages of oogenesis; 

the first stage is the primary growth stage (definitive follicle is formed), the second stage 

is the cortical alveolus stage (contains randomly dispersed cortical alveoli, or “yolk 

vesicles”), the third stage is vitellogenesis (immense growth of the follicle occurs due to 

uptake of vitellogenin), the fourth stage is oocyte maturation, further separated into early 

maturation (follicular size increases due to hydration and protein uptake) and late 
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maturation (germinal vesicle breakdown occurs), and the fifth stage is ovulation (mature 

egg which is ready for ovulation). These stages resemble those as described for other fish 

species, including zebrafish (Clelland and Peng, 2009; Lyman-Gingerich and Pelegri, 

2007) and rainbow trout (Van Der Hurk and Peute, 1979). 

Ovarian development in teleost fish is controlled and regulated by a balance and 

interconnectivity among steroids and gonadotropins, through signalling pathways 

(Ramezani-Fard et al., 2013). In teleosts like mummichog, gonadotropins FSH (follicle 

stimulating hormone) and LH (luteinizing hormone) are released into the bloodstream 

from the pituitary and bind to their respective receptors (FSHr and LHr) on the ovary 

(Ohkubo et al., 2013; Shimizu et al., 2003). FSH is primarily involved in regulating 

gonadal steroidogenesis in the early developmental stages (primary growth – completion 

of vitellogenesis), as it correlates with E2 production, whereas LH is primarily involved 

in regulating oocyte maturation (early maturation – ovulation), as it correlates with MIS 

production (Ohkubo et al., 2013; Swanson et al., 1991). E2 action is mediated by estrogen 

receptors (ERs) which have the subtypes ERα (ESR1) and ERβ (including both ERβ1, or 

ESR2a, and ERβ2, or ESR2b; Menuet et al., 2002). It is presumed that the gene 

expression of ERs is regulated by steroid hormones, so expression rates will fluctuate in 

response to changes in steroidogenesis (Thomas, 2008); however, ESR1 is the only 

subtype that has been linked to biological function in previous studies, such as 

stimulation of vitellogenin synthesis in liver and E2 regulation (Chakraborty et al., 2011).  

All sex steroids are derived from cholesterol via a number of enzymatic 

conversions in a process known as steroidogenesis (Arukwe, 2008; Leusch and 

MacLatchy, 2003). Little is known about the expression of the genes involved in 
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regulation of the steroidogenic pathway across ovarian development in mummichog. 

These steroidogenic enzymes include: steroidogenic acute regulatory protein (StAR), 

which is a sterol transport protein that initiates cholesterol transport into the mitochondria 

(Rone et al., 2009); cytochrome P450 side-chain cleavage (P450scc, or CYP11), which 

produces pregnenolone (basal steroid) from cholesterol (Young et al., 2005); cytochrome 

P450 C17 (P450C17, or CYP17), which can catalyze the hydroxylation of pregnenolone 

to yield 17α-hydroxypregnenolone and then dehydroepiandrostone, or the hydroxylation 

of progesterone to yield 17α-hydroxyprogesterone and then androstenedione by 3β-HSD 

(Young et al., 2005); and cytochrome P450 aromatase (P450arom; CYP19a1 for ovarian, 

or CYP19b for brain), which converts T into E2 and is potentially responsible for the drop 

in estrogen levels that occur prior to maturation (Young et al., 2005).  

EDCs (endocrine disrupting compounds) have been shown to exert direct effects 

on gonadal steroidogenesis in teleosts through various mechanisms; EE2 (17α-ethinyl 

estradiol; a synthetic estrogen commonly found in municipal waste waters via birth 

control and hormone replacement therapy pharmaceuticals) can alter gonadal steroid 

production at specific sites within the steroidogenic pathway (Hogan et al., 2010; 

Thomas, 2008). EE2 is commonly used as a model compound to study the impact of 

estrogenic compounds on aquatic organisms, due to its environmental relevance and 

inability to be broken down in municipal wastewater treatment (Bosker et al., 2016). 

Mummichog exhibit a greater tolerance to EE2 when compared to other small-bodied 

species. For instance, a seven-year whole lake EE2 exposure demonstrated induced 

vitellogenin and the feminization of male fathead minnow (Pimephales promelas) at 5-6 

ng/L of EE2, and an eventual population collapse. Egg production was significantly 
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reduced in fathead minnow at concentrations of 0.47-3.92 ng/L of EE2 after a 21-day 

exposure (Armstrong et al., 2016), in Chinese rare minnow (Gobiocypris rarus) and 

zebrafish (Danio rerio) at concentrations as low as 0.2 ng/L EE2 and 1 ng/L EE2, 

respectively (Lin and Janz, 2006; Zha et al., 2008). Alternatively, mummichog respond to 

higher levels of EE2 at concentrations of 100 ng/L (Doyle et al., 2013; Gillio Meina et al., 

2013; Hogan et al., 2010; Peters et al., 2007). Confirming previous studies, Bosker et al. 

(2016) demonstrated that cumulative egg production per female was unaffected by high 

concentrations of EE2 at 100 ng/L (nominal), or 84.1 ng/l ± 6.0% of nominal, after 28 

days of exposure.  

Previous studies have tried to determine factors which cause lower sensitivity to 

EE2 in mummichog, by investigating environmental and physiological variables.  It was 

determined that there was no interaction between temperature and EE2, or salinity and 

EE2 on plasma steroid levels in mummichog (Gillio Meina et al., 2013). A tissue 

distribution study, however, showed that EE2 may be metabolized and cleared more 

quickly in mummichog, as mummichog accumulate EE2 to a greater degress in the 

gallbladder and liver, compared to the caracass in zebrafish and fathead minnow (Blewett 

et al., 2014). Because ovarian physiology differs in mummichog, primarily the lack of an 

E2 drop during maturation, it may be at least partially attributable to the decreased 

sensitivity of mummichog to EE2.  

The objectives of this study were to confirm the current understanding of 

mummichog maturation as it relates to ovarian steroidogenesis and to characterize the 

gene expression changes across the ovarian development cycle for the first time. With 

this deeper mechanistic understanding of mummichog ovarian steroidogenesis, it was 
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then possible to undertake a preliminary in vitro ovarian follicle exposure across 

maturational stages to EE2, to determine the effect on gene expression endpoints known 

to be estrogen sensitive in other teleost species. Together, these studies have progressed 

our understanding of mummichog ovarian development and provided a potential addition 

to the mechanistic understanding of the general resistance of mummichog to 

environmentally-relevant levels of EE2. 
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2.3 Materials and Methods  

2.3.1 Fish collection and holding 

Adult mummichog (6.07 – 21.1 g) were collected in June 2015 from Shemogue 

Harbour, NB, Canada (46° 10′ 35″ N, 64° 8′ 55″ W) by seine net (size of mesh: ¼”). The 

fish were transported to Wilfrid Laurier University in aerated plastic totes, and 

quarantined in 200 L plastic reservoirs for 14 days at room temperature with frequent 

water changes before being transferred and maintained in recirculating fish holding units. 

Fish were housed in 380 L single stock tanks (Aquabiotech Inc, Coaticook, QC, Canada) 

or held in a G-HAB unit consisting of 40 L and 60 L glass aquaria (Pentair, Apopka, FL, 

USA). Routine water quality tests (ammonia, nitrite and nitrate levels) and water changes 

(25% water change every two weeks and 50% water changes every month) were 

conducted to maintain conditions within desired levels. For all holding conditions, the 

water was maintained at 16-18 ppt salinity by the addition of artificial sea salt [Crystal 

Sea Marine Mix sea salt (Marine Enterprises International, Baltimore, MD, USA)] to 

City of Waterloo dechlorinated and reverse osmosis water. 

2.3.2 Characterization of the estrogen biosynthetic pathway during ovarian 

development  

In order to obtain ovaries at different stages during the reproductive cycle, 

photoperiod and temperature were adjusted in the stock tanks to mimic seasonal changes. 

The temperature and photoperiod began at 4oC and 8 h light: 16 h dark (held at these 

conditions for two weeks) to simulate a colder season and obtain regressed stages of 

ovarian follicles. The females were also separated from the males during this period and 

were fed commercial trout pellets (2mm; EWOS Pacific, Vancouver, BC, Canada) once a 
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day. Once sampling was complete (December 2015), the temperature and photoperiod 

was slowly raised to 12oC and 12 h light: 12 h dark (temperature was increased 1oC each 

day) to simulate warmer seasons and stimulate ovarian recrudescence and maturation. 

Males were added to the stock tanks and fish were fed commercial trout pellets twice a 

day; the temperature was also further increased slowly to 16oC. Once sampling was 

complete for the vitellogenic stage (April 2016), the temperature and photoperiod was 

slowly raised to 22oC and 16 h light: 8 h dark (spawning conditions) and fish were fed 

commercial trout pellets twice a day, and supplemented with freeze-dried blood worms 

(Glycera dibranchiata; BrineShrimpDirect, Ogden, UT, USA) once every other day. 

Maturing stages were easily collected at these conditions (April-May 2016). 

i) Sampling 

When female mummichog reached desired stages of ovarian development (as 

estimated from the increased size and softness of the female abdomen as it becomes 

larger with increasing ovarian development), fish were anaesthetized with ~0.05% ethyl 

3-aminobenzoate methanesulfonate salt (Sigma-Aldrich, Oakville, ON, Canada), bled 

from the caudal vasculature using heparinized 25 G 5/8 needles on 1 mL syringes, and 

killed by spinal severance after being weighed, as simplified in Figure S2.4. Fish were 

sampled on these dates: December 1st, 2015; April 12th, 15th and 20th, 2016; May 3rd, 

2016. The stage of ovarian development was classified with gross morphological 

assessment of the ovary following criteria listed in Table 2.1; the dominantly present 

stage (dominant stage ~ >75% of follicles in ovary) in samples were verified with 

histological assessment. Collected blood was kept on ice then centrifuged at 8000 x g for 

10 minutes at 4oC to isolate plasma. Plasma was pipetted and stored at -20oC in 1.5 mL 
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centrifuge tubes (Fisher Scientific, Ottawa, ON). E2, T and MIS levels were measured 

from plasma samples obtained from 15, 12, 16, 14, and 4 fish respectively classified as 

having ovaries with stage 1-5 follicles dominantly present. 

The ovary, liver, and brain (pituitaries were not isolated because of difficulty due 

to size) were dissected and removed, and ovary and liver were weighed. The ovary and 

liver weights, along with the whole-body weight, were used to calculate the GSI (gonadal 

somatic index) and LSI (liver somatic index) of each fish. 

GSI = 
𝑜𝑣𝑎𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 x 100                                             LSI = 

𝑙𝑖𝑣𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡

𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 x 100 

The liver and brain were snap-frozen on dry ice, then stored at -80oC, to be used 

later for RNA extractions and molecular analysis. The ovary was divided into two 

sections: one section was snap-frozen on dry ice and stored at -80oC (utilized later for 

RNA extractions and molecular analysis) and another section was placed in 75% 

Leibovitz-15 (L-15) medium [L-15 powder with L-glutamine (Sigma-Aldrich) diluted 

with ultrapure water as per manufacturer’s instructions; medium was balanced to a pH of 

7.5 and contained 10 mL of penicillin streptomycin (Thermo Fisher Scientific, 

Burlington, ON, Canada)]. Gene expression was measured from ovary (tissue), liver 

(tissue) and brain (whole) samples obtained from 9-12, 10-11, 14-15, 14, and 4 fish 

classified as having ovaries with stage 1-5, respectively, follicles dominantly present. 

ii) In vitro methodology 

Whole ovary tissue was placed into glass petri dishes containing 75% L-15 

medium and gently teased apart using forceps to separate different stages of follicles. In 

order to classify follicles into stages, an EVOS XL digital inverted microscope imaging 

system (Life Technologies, Thermo Fisher Scientific) was used to identify morphological 
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characteristics and measure follicle diameter, which corresponded to criteria in Table 2.1. 

Example images of staged follicles are shown in Figure 2.1. The incubation protocol was 

modified from McMaster et al. (1995) and MacLatchy et al. (2003). Follicles grouped by 

stage were incubated in 1 mL (stages 1-3) or 2 mL (stages 4-5) of culture medium (75% 

L-15) for 24 hours at 18oC, as simplified in Figure S2.6A. Each well contained 24 mg of 

tissue (3 pieces of 7-8 mg) for stage 1 (cortical alveoli) ovaries or 15 follicles for stage 2-

5 follicles, from individual fish. Samples from each fish were distributed into 2-6 wells, 

depending on the available tissue or follicles. The wells were divided into two treatments: 

control [basal (medium only)] or hCG (human chorionic gonadotropin; Lee Biosolutions, 

Maryland Heights, MO, USA) treated at 20 IU/mL. Preliminary results showed that this 

concentration of hCG stimulated steroid production by follicles (data not shown) and has 

been used in other studies (MacLatchy et al., 2003). hCG is an analogue to LH 

(luteinizing hormone), an endogenous gonadotropin responsible for oocyte maturation 

and stimulation of steroidogenesis. After incubation, medium was removed and stored at 

-20oC, while tissue was removed and stored at -80oC. The medium was later used for 

steroid hormone measurement of E2, T and MIS through enzyme immunoassay (EIA) 

analysis; medium was obtained from 10, 15, 12, 16, and 10 fish for stages 1-5, 

respectively. 
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Table 2.1. Size and morphology classification of ovarian stages (Modified from Selman 

and Wallace, 1986), verified through examination under an EVOS XL digital inverted 

microscope. 

Stage of 

Follicle 

Stage of 

Fish 

Follicle 

Diameter 

Description 

(1) 

Cortical 

Alveolus 

(R) 

Regressed 

175-550 µm Appearance of cortical alveoli (“yolk 

vesicles”) 

(2)  

Vitellogenesis 

(V) 

Vitellogenic 

550-1350 

µm 

Ooplasm is opaque, membrane-bound 

yolk spheres occur & germinal vesicle 

visible under microscope 

(3) 

Early 

Maturation 

(EM) Early 

Mature 

1350-1700 

µm 

Ooplasm becomes more translucent as 

oocyte matures & several oil droplets 

appear (dispersed) 

(4) 

Late 

Maturation 

(FM) Fully 

Mature 

1700-1900 

µm 

Ooplasm becomes more transparent, 

Germinal vesicle breakdown, lipid 

droplets continue to coalesce 

(5) 

Ovulated 

(OV) 

Ovulated 

1900 µm + Transparent follicles with no apparent 

membrane, covered by coat material 

“jelly” & oil droplets migrate to one pole 
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Figure 2.1. Images of staged follicles across the ovarian development cycle in 

mummichog: (A) cortical alveolus, (B) vitellogenesis, (C) early-mid mature, (D) late 

mature, (E) ovulated. Scale bar is 2000 µm for images A-C and E; scale bar is 1000 µm 

for image D. CAF = cortical alveolus follicle; GV = germinal vesicle; LD = lipid 

droplets. Images obtained from the EVOS XL digital inverted microscope imaging 

system. 

iii) Measurement of steroid hormone levels by EIA 

Steroids were extracted from plasma samples using ethyl-ether (according to 

Gillio-Meina et al., 2013). The extracted samples were dried overnight at room 

temperature and then reconstituted in 500 µL of EIA buffer (Cayman Chemical, Ann 
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Arbor, MI, USA) and stored at -80°C. Media samples from the in vitro incubations were 

assayed without extraction. EIAs for E2, T, and MIS were conducted as per the 

manufacturer’s (Cayman Chemical) instructions. The appropriate dilution for each steroid 

stage and basal or stimulated treatment, was determined by analyzing serial dilutions of 

pooled samples; dilutions used on plasma or media samples were either 2x or 4x. To 

determine if there was interference in the EIA caused by the L-15 media samples, 

standard curves were generated with both L-15 medium and EIA buffer; no differences 

were found. Therefore, media samples were assayed directly in the EIA. Interassays were 

created for each hormone measured; following EIA, the coefficient of variation was 

calculated to be 7% for E2, 13% for T, and 11% for MIS [standard deviation of 

samples/mean of samples x 100], which indicates that the method is reproducible and 

reliable. The samples were read at a wavelength of 420 nm using a Molecular Device 

SpectramaxPlus 384 microplate reader (Molecular Devices, Sunnyvale, CA, USA). Mean 

fold increase (shown to compare hCG-stimulated production to basal production, per 

treatment and stage) was calculated as follows: 

(ℎ𝐶𝐺 𝑣𝑎𝑙𝑢𝑒 𝑏𝑎𝑠𝑎𝑙 𝑣𝑎𝑙𝑢𝑒⁄ ) of sample 1 +  (ℎ𝐶𝐺 𝑣𝑎𝑙𝑢𝑒 𝑏𝑎𝑠𝑎𝑙 𝑣𝑎𝑙𝑢𝑒⁄ ) sample of 2 … + (ℎ𝐶𝐺 𝑣𝑎𝑙𝑢𝑒 𝑏𝑎𝑠𝑎𝑙 𝑣𝑎𝑙𝑢𝑒⁄ ) of sample  N 

𝑁
 

iv) RNA extraction, cDNA synthesis and qPCR 

Total RNA was extracted from frozen ovary (whole ovary or isolated follicles), 

liver and brain tissue, using TRIzol reagent (Invitrogen, Burlington, ON, Canada). The 

protocol was carried out as per the manufacturer’s instructions with minor modifications. 

Ovary and liver samples (20-50 mg), whole brains, or separated follicles (15-40, 

depending on experiment) were added to centrifuge tubes with 800 µL of TRIzol reagent, 

and homogenized via mechanical disruption using a hand-held homogenizer (Knotes 
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Pellet Pestle Cordless Motor, Fisher Scientific), or a 21G (0.8 mm x 25 mm) needle on a 

3 mL syringe. Chloroform (160 µL) was added for the extraction of RNA into the top, 

clear supernatant. The samples were centrifuged at 12,000 x g for 15 minutes at 4oC, after 

which the top RNA layer was decanted into 400 µL of iso-propanol of a correspondingly 

labelled tube, and then centrifuged again at the same parameters. The supernatant was 

discarded, and 800 µL of 75% ethanol was added to the tubes containing the RNA pellet, 

then the tubes were centrifuged at 7,500 x g for 5 minutes at 4oC. The ethanol layer was 

poured off and the pelleted RNA was dissolved in 10-60 µL (depending on size of pellet) 

of RNase-free water. The samples were then vortexed briefly, heated at 55-58oC for 5-10 

minutes to fully dissolve the RNA pellet, and stored at -80oC. 

RNA yield was verified using a Nanodrop 8000 (Thermo Fisher Scientific, 

Burlington, ON) with 2 µL of samples at two dilutions of 10 and 50x to allow for an 

accurate calculation of the undiluted RNA. RNA samples were then diluted to 1000 

ng/µL with molecular grade water, for use in the cDNA reactions. RNA sample quality 

was checked at a 260/280 nm wavelength, and samples were read between 1.6 and 2.0. A 

subset of 10x diluted RNA samples were randomly selected from each experiment to 

verify RNA integrity using RNA StdSens Chips on the Experion Automated 

Electrophoresis Station (Bio-Rad Laboratories, Mississauga, ON, Canada) as per the 

manufacturer’s instructions.  

RNA samples were treated for potential genomic DNA contamination with the 

AMP-D1 kit (Sigma Aldrich) according to the instructions prior to cDNA synthesis. 2 µL 

of 1000 ng/µL RNA was added to a 0.2 mL PCR tube containing 6 µL of RNase-free 

water, 1 µL of 10 x Reaction Buffer and 1 µL of DNAse enzyme. The samples were 
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heated at 70oC for 10 minutes [using a C1000 PCR thermocycler (Bio-Rad Laboratories)] 

and then chilled on ice. Reverse transcription of total RNA was performed with 4 µL of 

iScript Reverse Transcription Supermix (Bio-Rad Laboratories) and followed the 

manufacturer’s instructions, with parameters of 5 min at 25oC for priming, 30 min at 

42oC for RT (reverse transcription), 5 min at 85oC for inactivation, and cooling to 4oC. 

The resulting cDNA was stored at -20oC until real-time quantitative PCR (qPCR) 

analysis.   

qPCR was performed in duplicate for each sample using SsoFast EvaGreen 

Supermix and the CFX96 Real-Time System (Bio-Rad Laboratories) in a reaction 

volume of 10 µL containing 2.5 µL of cDNA, 5 µL EvaGreen, 1.25 µL of each forward 

and reverse primers. The qPCR parameters were 30 seconds at 95oC, followed by 40 

cycles of 95oC for 1 second and 55oC for 5 seconds, which was the annealing temperature 

determined to be best suited for all of the primers through a series of temperature gradient 

tests. To demonstrate primer specificity and the amplification of a single amplicon, 

dissociation curves were conducted on all reactions. Genomic DNA and RT-water 

controls were conducted on approximately 10% of the samples and were found to be free 

of contamination. 

Oligonucleotide primers for most genes of interest were designed using IDT 

PrimerQuest Tool, and obtained from either Sigma-Aldrich or IDT [Integrated DNA 

Technologies (Coralville, IA, USA)]. Table 2.2 presents the primer sequences and their 

NCBI GenBank accession numbers. The relative standard curve qPCR method was used 

and six-point standard curves were generated for each gene with primer efficiency values 

shown in Supplementary Table S2.1. 
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Genes of interest were normalized to a reference gene, which was shown to not 

change expression levels in female mummichog undergoing ovarian development (data 

shown in Figure S2.1, S2.2, and S2.3). The reference genes used were estrogen receptor 

β1 (ESR2a) in the ovary, 18sRNA in the liver, and EF1α in the brain. 

Table 2.2. Forward (FWD) and reverse (REV) primer sequences used for qPCR analysis 

with accession numbers and commercial source.  

Gene  Sequence 5’-3’ Accession # Company 

Β-Actin FWD 

REV 

GCA CGG TAT TGT GAC CAA 

GGG TGT TGA AGG TCT CAA 

AF397164 Sigma 

EF1α FWD 

REV 

TCA CCA TCA GCT TTT ATA AAG 

GAC GCT CCA TTG CCT ACT GTC 

AY735180 Sigma 

18s-RNA FWD 

REV 

GTC GTA GTT CCG ACC ATA AAC 

CAC CCA CAG AAT CGA GAA AG 

M91180 IDT 

ESR1 FWD 

REV 

ACT CTA CCA CTG GCT ACT ACT C 

GCT GGT GAC TGG ATC TGT AAA 

AY571785 IDT 

ESR2a FWD 

REV 

GAG GAG CAT CCA AGG ACA TAA C 

TTG GTC ATG CCG ACT TCA TAG 

AY570922 IDT 

ESR2b FWD 

REV 

CTC AGC CGA ACC ACA GTA ATC 

CTC CAG CCA GCA ACA CTT TA 

AY570923 IDT 

LHr FWD 

REV 

TGG AAA CCA TCG AGG CAT TAG 

GAC ATC AGG GAA GAG CGT TAT C 

AB295491 IDT 

FSHr FWD 

REV 

CCA TCT CCT TCT TTG CCA TCT 

CCA TCC AGA CTC AGC GTA TTC 

AB295490 IDT 

StAR FWD 

REV 

CCT TCA AAA GAT CGG ACA GG 

TTT CTG AGG CAT TTG TG 

Doyle et al., 

2013 

IDT 

CYP11a1 FWD 

REV 

TTC AAG GCA GAG GGT CAA TAT C 

AGG TCC GTG GTC CAT TTA TTC 

AB471800 IDT 

CYP17a1 FWD 

REV 

CTG CTT CAA CTC CTC CTA TTC 

CCT TGT GCT CGT TGT ACT T 

XM_012852

073 

(Predicted 

Sequence) 

IDT 

CYP19a1 FWD 

REV 

GTC CAC TCT TGT CTT ATT TG 

GTC TCC TCT CCA TTG ATC 

AY428665 Sigma 

CYP19b FWD 

REV 

CTG TGA GGA CTC AGA AA 

TCA GTG CGA GGT TAT AC 

AY428666 IDT 

Vtg1  FWD 

REV 

GTT GGC ATA CAC TGA GAA 

AGA CGT AAC TTA ATG TTG TG 

AAA93123 Sigma 
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v) Histological assessment  

At the time of dissection and based on gross morphology, ovaries were classified 

according to Table 2.1 if approximately ≥75% of the follicles present within the ovary 

appeared to be in the desired stage (1 – 5). Histological assessments of approximately 

25% (N= 3-4 per stage) of the ovaries were conducted to ensure the ovaries contained a 

majority of the desired stage of follicle (Figure 2.2). Follicle diameter was measured with 

the EVOS XL digital inverted microscope imagining system (Figure 2.1). Histological 

assessments of subsamples of the ovaries verified these classifications (Figure 2.2). 

Pieces of whole ovary were placed into cassettes [7x12 mm Tissue Path MACROSETTE 

Processing/Embedding Cassettes (Fisher Scientific)], immersed in 10% buffered formalin 

(Fisher Chemical, Ottawa, ON, Canada) and processed by the University of Guelph 

Animal Health Laboratory. Samples were paraffin embedded, cross-sectioned at 4 µm at 

3 different levels, stained with standard haemotoxylin and eosin, and mounted on slides 

using Tissue Tek permanent mounting medium (Sakura Finetek, Torrance, CA, USA). 

Slides were examined under a Zeiss Axio Upright Observer Microscope (Carl Zeiss, 

Toronto, ON) under 5-10x magnification, using ZEN Pro Software (Carl Zeiss, Toronto, 

ON) to determine the stage of ovarian development and to allow for measurements of the 

diameters of the follicles as shown in Table 2.1.  

2.3.3 Molecular characterization of the biosynthetic pathway of ovarian follicles 

 In order to characterize the expression of genes across follicular stages of 

development and provide a comparison of the expression levels determined in whole 

ovarian tissue, individual follicles were separated and classified by stage. The females 

used for this work were held at conditions known to be favourable for the continuous 
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production of mature eggs (spawning conditions: 22oC with 16h L: 18h D, as per 

demonstrated in Peterson et al., 2010). The fish were from the same stock used in the 

work described in Section 2.3.2, but were sampled on February 10th and 17th 2017, to 

collect sufficient numbers of follicles at each stage from multiple fish. 

i) Sampling 

Sampling was followed as outlined in section 2.3.2.i and ii with few exceptions. 

The whole ovary was dissected and placed directly into petri dishes containing 75% L-15 

medium, and underwent the sorting process (similar to section 2.3.2.ii). When collecting 

ovulated follicles (stage 5), the abdomen of the fish was slightly squeezed to release the 

ovulated follicles from the abdominal cavity, through the ovipositor. After sorting, the 

isolated follicles were removed from the medium and placed in sterilized 1.5 mL Flat 

Top Microtubes (Diamed, Mississauga, ON) in groups of ~30-40 follicles that were snap-

frozen and stored at -80oC. The total time for this process was under 10 minutes, as each 

fish was processed individually. Gene expression was measured from grouped ovarian 

follicle samples obtained from 7-8 fish for each stage. 

ii) RNA extraction and qPCR 

The RNA extraction and qPCR protocol was followed as outlined in section 

2.3.2.iv with minor modifications. Total RNA was extracted from frozen ovarian follicles 

(30-40 per sample), using TRIzol reagent. Following the extraction procedure total RNA 

was pelleted, rinsed with 75% ethanol, reconstituted in 10-40 µL RNase-free water and 

incubated at 56-59oC for 5-10 minutes to fully dissolve the RNA pellet. Gene expression 

values were normalized to adjusted values of ESR2a, based on the approach described by 

Ings and Van Der Kraak, 2006 (Table S2.1), due to the inability to find a reference gene 
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which was steadily expressed across all stages. Stage 5 (ovulated) follicles produced non-

detectable amounts of gene expression, so they were excluded from gene expression 

analysis data.  

iii) Histology assessment 

The histology protocol was followed as outlined in section 2.3.4.v, with the 

exception of storing the isolated follicles in 15mL disposable, polypropylene centrifuge 

tubes (Fisher Scientific) containing ~5mL of 10% buffered formalin. These centrifuge 

tubes were sent to the University of Guelph Animal Health Laboratory to be processed 

for histological analysis. 

2.3.4 Effect of EE2 on basal and hCG-stimulated ovarian follicles: steroid 

production and gene expression 

 To assess the effect of EE2 on gene expression and hormone production at the 

gonadal level in mummichog, staged ovarian follicles were exposed to 50-250 nM of EE2 

over a 24 h incubation period, as simplified in Figure S2.5. The fish used in this 

experiment were from the same stock used in the work described in Section 2.3.2 and 

2.3.3., but were sampled from October 21st 2016 to December 21st 2016, over 11 days in 

order to collect sufficient numbers of follicles at each stage for each treatment, from 

multiple fish. Stock tanks were held at spawning conditions (22oC with 16h L: 18h D) in 

order to obtain ovaries with follicles at various maturation stages. 

i) Sampling 

Sampling was followed as outlined in section 2.3.3.i with minor modifications. 

After the sorting process, the separated follicles were removed from the medium and 
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placed in 1-2 mL of fresh medium in in vitro plate wells. Wells each contained 25 

follicles of a specific stage; the mass of tissue for each well was recorded prior to 

incubation. Regressed ovaries (stage 1) were cut into pieces of 7-8 mg, while in medium, 

with a total of 3 pieces per well (total ~24 mg).  

ii) In vitro methodology 

The in vitro protocol was followed as outlined in 2.3.2ii with a few exceptions, as 

simplified in Figure S2.6B. The follicles were obtained from multiple fish for every stage 

(3-4 individual fish per pool). Each pool was distributed into 11 wells. Each well 

contained 24 mg of tissue (three pieces of 7-8 mg) for regressed (cortical alveoli) ovaries 

or 25 follicles for vitellogenic to ovulated ovaries. There were 11 treatments per stage, 

with a total of 7-8 reps per stage (n = 7-8). The first treatment was time zero; after 

follicles were sorted, samples from each pool were removed from the medium and 

directly snap-frozen, then stored at -80oC. There were five treatments: no solvent control 

(only L-15 medium), solvent (ethanol) control, 50 nM EE2, 100 nM EE2, and 250 nM 

EE2; these treatments were either basal or hCG-stimulated, resulting in a total of 10 

treatments plus one time zero sample per pool/stage. Concentrated stocks of EE2 (Sigma-

Aldrich) were prepared in ethanol at concentrations of 10, 20, and 50 µM, and stored in 

glass vials at -20oC. EE2 and ethanol were added to wells at 5 µL per 1 mL of total 

solution (as per McMaster et al., 2005), resulting in final concentrations of 50, 100 and 

250 nM per well (concentrations are equivalent to 14.82 µg/mL, 29.64 µg/mL, and 74.1 

µg/mL respectively). After incubation, the media were removed, stored at -20oC, and 

used later for steroid hormone measurement of T and MIS through EIA analysis, on a 
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subset of samples (all stage 2, 3 and 4 samples). The tissue was also removed, stored at -

80oC and later used for gene expression analysis. 

iii) RNA extraction and qPCR 

The RNA extraction and qPCR protocol were followed as outlined in section 

2.3.3.ii with the exception that total RNA was extracted from frozen ovarian follicles (25 

per sample), using TRIzol reagent. Gene expression values were normalized to β-actin.  

2.3.5 Statistics 

 Statistical analysis was performed using SPSS 23 (IBM Canada Ltd, Markham, 

ON, Canada). One-way analysis of variance (ANOVA) was performed to assess plasma 

and in vitro steroid hormone levels (E2, T & MIS), or gene expression (ERs, P450 

enzymes, StAR, LHr, FSHr), across the different stages of maturation. Two-way 

ANOVA was performed to assess basal T and MIS production across different stages of 

follicle maturation with different treatments of EE2 (from in vitro exposure). 

Assumptions of normality and homogeneity of variance were tested using Shaprio-Wilk’s 

W test and Levene’s test, respectively. If the data were not normally distributed, or did 

not test positive for homogeneity of variance, the data were log transformed or square-

root transformed (rarely) through SPSS, and the parameters were tested again. If the 

normality and variance tests still failed after data transformation, then the non-parametric 

Games-Howell test was used; Tukey’s test was used for all parametric post hoc analyses. 

In all cases, a p-value of 0.05 was chosen to indicate significance.  
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2.4 Results 

2.4.1 Characterization of the estrogen biosynthetic pathway during ovarian 

development 

i)  Morphometric Data 

Morphometric data, such as body weight, gonad weight and liver weight, were 

recorded from sampled fish and analyzed to determine the mean GSI and LSI for each 

stage of fish. Mean GSI in fish increased with increasing stage of ovarian development 

[minimum at R, 1.72 ± 0.17 %; maximum at OV, 12.36 ± 3.2 %; p = 0.00 (Table 2.3)], as 

did body weight [minimum at R, 10.1 ± 0.55 g; maximum at OV, 17.4 ± 1.0 g; p = 0.00 

(Table 2.3)], and gonad weight [minimum at R, 0.17 ± 0.01 g; maximum at OV, 2.09 ± 

0.45 g; p = 0.00 (Table 2.3)]. Mean LSI in fish remained relatively the same across 

stages, except for an increase in regressed fish [minimum at FM, 3.87 ± 0.32 %; 

maximum at R, 6.53 ± 0.24 %; p = 0.00 (Table 2.3)], and there were no significant 

changes in liver weight across stages [minimum at V, 0.55 ± 0.05 g; maximum at OV, 

0.80 ± 0.11 g; p = 0.20 (Table 2.3)]. 

ii) Plasma hormones in females across the reproductive cycle 

Plasma E2 production was highest compared to T or MIS levels across all stages 

of fish examined (Figure 2.3). R (regressed) refers to fish containing primarily cortical 

alveoli follicles; V (vitellogenic) refers to fish containing primarily vitellogenic follicles; 

EM (early mature) refers to fish containing primarily early mature follicles; FM (fully 

mature) refers to fish containing primarily late mature follicles; OV (ovulated) refers to 

fish containing primarily ovulated follicles. Plasma T levels increased from regressed to 
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fully mature fish and were highest in fully mature fish; fully mature fish were 

significantly higher than regressed or vitellogenic fish [minimum at V, 88.5 ± 21.3 

pg/mL; maximum at FM, 250.0 ± 32.0 pg/mL; p = 0.00 (Figure 2.3 A)]. Mean plasma E2 

significantly increased from regressed to fully mature fish, and dropped in ovulating fish 

[minimum at R, 26.5 ± 3.09 pg/mL; maximum at FM, 2550 ± 339 pg/mL; p = 0.00 

(Figure 2.3 B)]. Mean plasma MIS had no significant changes from regressed to early 

mature fish, but significantly increased form early mature to ovulating fish [minimum at 

V, 0.3 ± 0.1 pg/mL; maximum at OV, 5.0 ± 1.2 pg/mL; p = 0.00 (Figure 2.3 C)].  

iii) In vitro steroid production across follicular stages of ovarian development  

Basal E2 production was highest compared to T or MIS levels across all stages of 

follicles examined (Figure 2.4). Mean basal and hCG-stimulated levels of E2, T and MIS 

(Figure 2.4) dropped between stages 1-2. The decline in basal in vitro hormone 

production seen in stage 2 follicles is most likely due to the difference in tissue weight 

per well (a methodological issue), and the results are focussed on stage 2 to stage 5 

follicles. Basal T significantly increased during stage 4, while having no significant 

differences across stages 2, 3 or 5 [minimum at stage 3, 10.2 ± 1.5 pg/mL; maximum at 

stage 4, 26.5 ± 5.0 pg/mL; p = 0.00 (Figure 2.4 A)]. Basal E2 increased from stage 2 to 

stage 4 [minimum at stage 5, 84.7 ± 25.7 pg/mL; maximum at stage 4, 2096 ± 261 

pg/mL; p = 0.00 (Figure 2.4 C)]. Basal MIS levels significantly increased from stage 2 to 

stage 4, and remained at high levels during stage 5 [minimum at stage 2, 0.96 ± 0.2 

pg/mL; maximum at stage 5, 18.45 ± 7.8 pg/mL; p = 0.00 (Figure 2.4 E)]. hCG-

stimulated T, E2 and MIS production was highest at stage 3, had no significant 

differences between stages 3-4, and had low production during stage 2 and 5 (p = 0.00 for 
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each hormone; Figure 2.4 B, D, F). hCG-stimulated hormone production was highest for 

E2, then MIS, and lowest for T. 

Fold increase of hCG-stimulated to basal production of steroids by separated and 

staged (stages 1 to 5; refer to Table 2.1) follicles were examined to compare hormone 

levels across different stages of maturation, without being influenced by follicle size or 

weight. Early mature (stage 3) follicles showed the greatest capacity to respond to hCG 

treatment and the MIS response seemed most pronounced at this stage given that hCG 

had little stimulatory effect on MIS at all other stages (Figure 2.5). The fold increase 

(hCG-treated to basal hormone levels) of T, E2 and MIS at stage 3 were 25.8 ± 6.9 [p = 

0.00 (Figure 2.5 A)], 5.0 ± 0.8 [p = 0.00 (Figure 2.5 B)], and 243.2 ± 66.7 [p = 0.00 

(Figure 2.5 C)], respectively.  

iv)  Gene expression in females across the reproductive cycle 

Gene expression was determined in whole ovary pieces from fish that were 

sampled over the reproductive cycle having group-synchronous ovaries, characterized as 

containing >75% of a desired stage (based under gross examination under a microscope). 

Follicles were later verified through histological assessment (Figure 2.2) and stage of fish 

was supported with morphometric data (Table 2.3). Ovarian expression data were 

normalized to estrogen receptor ERβ1 (ESR2a) and displayed as the fold change relative 

to the regressed stage. The constant expression of ESR2a across all ovarian 

developmental stages is shown in Supplemental Figure S2.1.  

Ovarian expression of ESR1 significantly increased in vitellogenic fish and had 

no significant changes in expression throughout the rest of maturation [minimum at R, 

1.0 ± 0.2; maximum at FM, 4.8 ± 0.5; p = 0.00 (Figure 2.6 A)]. Ovarian ESR2b 
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expression peaked in regressed fish, dropped in vitellogenic fish and had no significant 

differences in expression throughout the rest of maturation [minimum at OV, 0.2 ± 0.1; 

maximum at R, 1.0 ± 0.3; p = 0.00 (Figure 2.6 B)]. Expression of FSHr in ovary peaked 

in early mature fish and had no significant differences between early maturation to 

ovulation [minimum at R, 1.0 ± 0.2; maximum at EM, 8.9 ± 2.5; p = 0.00 (Figure 2.6 C)]. 

Ovarian expression of LHr increased from regressed to fully mature fish, and decreased 

in ovulating fish [minimum at R, 1.0 ± 0.3; maximum at FM, 56.6 ± 15.7; p = 0.00 

(Figure 2.6 D)].  

All steroidogenic enzymes increased in expression throughout the ovarian 

development cycle. StAR expression was highest in ovulating fish [minimum at R, 1.0 ± 

0.1; maximum at OV, 184.1 ± 92.9; p = 0.00 (Figure 2.7 A)]. CYP11 expression was 

highest in fully mature fish [minimum at R, 1.0 ± 0.1; maximum at FM, 21.4 ± 6.8; p = 

0.00 (Figure 2.7 B)]. CYP17 expression was highest in fully mature and ovulating fish 

[minimum at V, 0.7 ± 0.1; maximum at OV, 4.3 ± 1.3; p = 0.002 (Figure 2.7 C)]. 

CYP19a1 peaked in fully mature fish [minimum at V, 0.7 ± 0.2; maximum at FM, 6.2 ± 

3.0; p = 0.00 (Figure 2.7 D)].  

Liver gene expression was analyzed from whole liver tissue dissected from fish 

that were sampled over the reproductive cycle having ovaries characterized as containing 

>75% of a desired stage. Liver expression data were normalized to 18sRNA and 

displayed as the fold change relative to the regressed stage. The constant expression of 

18sRNA across all ovarian developmental stages is shown in Supplemental Figure S2.2. 

Expression of ESR1 in the liver increased throughout the cycle, and was highest 

in ovulating fish [minimum at R, 1.0 ± 0.1; maximum at OV, 2.5 ± 0.4; p = 0.00 (Figure 
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2.8 A)]. VTG1 expression is associated with ESR1 expression trends [minimum at R, 1.0 

± 0.2; maximum at OV, 26.8 ± 1.8; p = 0.00 (Figure 2.8 D)]. Expression of ESR2a 

decreased throughout the cycle, with no significant changes between early maturation to 

ovulation [minimum at FM, 0.2 ± 0.0; maximum at R, 1 ± 0.1; p = 0.00 (Figure 2.8 B)]. 

Expression of ESR2b peaked at in vitellogenic fish, with low expression and no 

significant changes in all other stages [minimum at R, 1.0 ± 0.13; maximum at V, 11.1 ± 

1.8; p = 0.00 (Figure 2.8 B)].  

Brain gene expression was analyzed from whole brain tissue dissected from fish 

that were sampled over the reproductive cycle having ovaries characterized as containing 

>75% of a desired stage. Brian expression data were normalized to EF1α and displayed 

as the fold change relative to the regressed stage. The constant expression of EF1α across 

all ovarian developmental stages is shown in Supplemental Figure S2.3. There were no 

significant changes in expression of CYP19b across the ovarian development cycle 

[minimum at OV, 0.8 ± 0.3; maximum at V, 1.2 ± 0.1; p = 0.61 (Supplemental Figure 

S2.4)].  

2.4.2 Molecular Characterization across Follicular Stages in the Maturation Cycle   

Using additional fish, gene expression in follicles isolated by 100% stage were 

assessed. Gene expression in stages 1-5 (refer to Table 2.1) were measured and verified 

through histological analysis. Stage 5 (ovulating) was excluded as qPCR results showed 

non-detectable expression (with the exception of ESR2b). Follicular expression data were 

normalized to adjusted values of ESR2a and displayed as the fold change relative to stage 

1. The formula used for adjusting ESR2a values is found in Supplementary Table S2.1. 
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Follicular expression of ESR1 had no significant differences amongst stages 1-3; 

however, stage 4 (late mature) was significantly lower than stage 2 (vitellogenic) 

[minimum at stage 4, 0.7 ± 0.1; maximum at stage 2, 1.6 ± 0.1; p = 0.00 (Figure 2.9 A)]. 

Expression of ESR2b decreased across maturation [minimum at stage 5 (ovulated), 0.0 ± 

0.0; maximum at stage 1 (cortical alveoli), 1 ± 0.3; p = 0.00 (Figure 2.9 B)]. FSHr 

expression peaked during stage 2, and had low expression with no significant differences 

across all other stages [minimum at stage 4, 0.7 ± 0.3; maximum at stage 2, 6.4 ± 0.7; p = 

0.00 (Figure 2.9 C)]. LHr expression increased across maturation until stage 3 (early 

mature) [minimum at stage 1, 1 ± 0.3; maximum at stage 4, 19.0 ± 2.1; p = 0.00 (Figure 

2.9 D)].   

Follicular expression of StAR and CYP11 increased throughout the cycle. StAR 

had highest expression during stage 4 (late mature) [minimum at stage 1, 1 ± 0.09; 

maximum at stage 4, 171.5 ± 76.0; p = 0.00 (Figure 2.10 A)], and CYP11 peaked during 

stage 3 (early mature) [minimum at stage 1, 0.9 ± 0.2; maximum at stage 3, 6.1 ± 1.4; p = 

0.00 (Figure 2.10 B)]. Expression of CYP17 peaked during stage 1 (cortical alveoli) and 

had minimal expression across stages 2-4 (vitellogenic – late mature) [minimum at stage 

3, 0.0 ± 0.0; maximum at stage 1, 1 ± 0.2; p = 0.00 (Figure 2.10 C)]. There were no 

significant changes in expression of CYP19a1 between stages 1-3 (cortical alveoli – early 

mature); however, there was a significant decrease in expression at stage 4 (late mature) 

[minimum at stage 4, 0.2 ± 0.1; maximum at stage 2, 1.3 ± 0.2; p = 0.00 (Figure 2.10 D)].  
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2.4.3 Effect of EE2 on Basal and hCG-stimulated Follicular Steroid Production and 

Gene Expression  

Gene expression in follicles (stages 1-4; cortical alveoli, vitellogenic, early 

mature, and late mature) isolated by stage (e.g., stage 2 contained 100% follicles at stage 

2) were assessed after in vitro incubation with varying EE2 treatments. The medium was 

removed and utilized for hormone analysis and the tissue was utilized for gene expression 

analysis. The basal and hCG-stimulated steroid results of the in vitro incubations from 

ovarian follicles (stages 2-4), treated with 50, 100 and 250 nM EE2 are shown in Table 

2.4. As expected, basal T and MIS levels increased significantly with increased 

maturational stage of the ovarian follicles [for T, p = 0.00 from Two-way ANOVA; for 

MIS p = 0.00 from Two-way ANOVA (Table 2.4)]; however, the steroid levels were 

unaffected by EE2 treatments (50, 100 and 250 nM) at all stages examined. There was no 

significant effect of EE2 on basal T levels (for stages 2-4, p = 0.11, 0.09, and 0.67, 

respectively (Table 2.4)) or hCG-stimulated T levels (for stages 2-4, p = 0.51, 0.36, and 

0.57, respectively (Table 2.4)) for any stage of maturation analyzed. There was no 

significant effect of EE2 on basal MIS levels (for stages 2-4, p = 0.88, 0.26, and 0.97 

(Table 2.4)) or hCG-stimulated MIS levels (for stages 2-4, p = 0.44, 0.69, 0.98, 

respectively (Table 2.4)) for any stage of maturation analyzed. hCG-stimulated 

incubations produced significantly higher levels of hormone for both T and MIS during 

stages 2-4 (p < 0.05; data not shown).  

Follicular expression data were normalized to β-actin, and displayed as the fold 

change relative to the time 0-hour control. There were no significant effects of EE2 

treatment on CYP19a1 expression for any stage of follicular development (Table 2.5). 
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There was a significant increase in CYP19a1 expression with hCG stimulation for stages 

2, 3 and 4 (for stages 1-4, p = 0.00, 0.03, 0.00, 0.00). Time 0 expression was greater than 

basal 24 h expression for all stages, but varied per stage for hCG-stimulated expression. 

Stage 1: time 0 > 24h expression, stage 2: time 0 = hCG-stimulated 24 h expression, 

stage 3 and 4: time 0 < hCG-stimulated 24 h expression. There was no significant effect 

of EE2 treatment on LHr (luteinizing hormone) expression for any stage of follicular 

development as well (Table 2.5). hCG stimulation had no effect on LHr expression for 

either stage (for stages 1-4, p = 0.21, 0.71, 0.09, 0.43). Time 0 expression was equal to 24 

h expression levels for stages 1-4, however the basal control was significantly lower than 

time 0 expression at stage 3.  
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Figure 2.2 Images of ovarian tissue sampled from mummichog over the developmental 

cycle to provide examples of the ovaries staged as A) regressed (primarily stage 1), B) 

vitellogenic (primarily stage 2), C) early mature (primarily stage 3), D) fully mature 

(primarily stage 4), E) ovulated (primarily stage 5). Scale bar is 200 µm. PN = 

perinucleolar; CA = cortical alveolar; GV = germinal vesicle; PV = previtellogenic; V = 

vitellogenic; YP = yolk proteins; EM = early mature; M = mature; PO = post ovulated; 

JC = jelly coat. H&E stained sections were prepared by the University of Guelph 

Histology Laboratory. 
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Table 2.3. Mean (± SEM) body weight, gonad weight, liver weight, gonadosomatic and liversomatic index of female mummichog 

sampled with ovaries containing a majority of cortical alveoli (regressed), vitellogenic, early mature, late mature (fully mature) or 

ovulated follicles. Different letters indicate significant differences for the GSI and LSI. P = 0.00 for body weight, gonad weight, GSI 

and LSI. P = 0.198 for liver weight. 

Sample Date Stage Body Weight 

(g) 

Gonad Weight 

(g) 

Liver Weight 

(g) 

GSI (%) LSI (%) N 

December 

2015 

Regressed 10.12 ± 0.55 A 0.17 ± 0.01 A 0.65 ± 0.04 A 1.72 ± 0.17 A 6.53 ± 0.24 A 20 

April 2016 Vitellogenic 13.39 ± 0.47 AB 0.44 ± 0.07 B 0.55 ± 0.05 A 3.30 ± 0.51 B 4.12 ± 0.39 B 10 

April 2016 Early Mature 15.58 ± 0.85 BC 1.07 ± 0.10 C 0.66 ± 0.07 A 6.78 ± 0.34 C 4.21 ± 0.43 B 14 

April 2016 Fully Mature 14.54 ± 0.77 BC 1.23 ± 0.08 C 0.56 ± 0.05 A 8.58 ± 0.57 CD 3.87 ± 0.32 B 14 

May 2016 Ovulating 17.40 ± 1.02 C 2.09 ± 0.45 D 0.80 ± 0.11 A 12.36 ± 3.2 D 4.54 ± 0.36 B 4 
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Figure 2.3 Mean (±SEM) plasma testosterone (A), 17β-estradiol (B), and maturation 

inducing steroid (C) levels (pg/mL) characterized over the developmental cycle in female 

mummichog with ovaries containing a majority of cortical alveoli (regressed: R), 

vitellogenic (V), early mature (EM), late mature (fully mature: FM) or ovulated (OV) 

follicles. Different letters indicate significant differences. The number of females 

sampled at each point were 15, 12, 16, 14, and 4, respectively, for each hormone. 
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Figure 2.4. Mean (±SEM) follicular in vitro production of basal testosterone (A), hCG-

stimulated testosterone (B), basal 17β-estradiol (E2; C), hCG-stimulated E2 (D), basal 

maturation inducing steroid (MIS; E), and hCG-stimulated MIS (F) levels (pg/mL), 

characterized over the ovarian development cycle in cortical alveoli (stage 1), 

vitellogenic (stage 2), early mature (stage 3), late mature (stage 4) and ovulated (stage 5) 

follicles. Different letters indicate significant differences. N = 10, 14-15, 11-13, 13-15, 

and 8-9 for stages 1-5, respectively. 
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Figure 2.5. Fold increase of hCG-stimulated to basal hormone production of testosterone 

(A), 17β-estradiol (B) and maturation inducing steroid (C) characterized over the ovarian 

development cycle in cortical alveolus (stage 1), vitellogenic (stage 2), early mature 

(stage 3), late mature (stage 4) and ovulated (stage 5) follicles. Different letters indicate 

significant differences. N = 10, 14-15, 11-12, 13-15, and 8-9 for stages 1-5, respectively. 
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Figure 2.6. Expression of ESR1 (A), ESR2b (B), FSHr (C), and LHr (D) in mummichog 

whole ovaries dominated by cortical alveoli (regressed: R), vitellogenic (V), early mature 

(EM), late mature (fully mature: FM) or ovulated (OV) follicles. Data were normalized to 

ESR2a and displayed as the fold change relative to the R stage. Values represent the 

mean ± S.E.M. N= 8-9, 10, 14, 14, and 4, for stages 1-5, respectively, as determined by 

qPCR. Different letters indicate significant differences.  
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Figure 2.7. Expression of StAR (A), CYP11 (B), CYP17 (C), and CYP19a1 (D) in 

mummichog whole ovaries dominated by cortical alveoli (regressed: R), vitellogenic (V), 

early mature (EM), late mature (fully mature: FM) or ovulated (OV) follicles. Data were 

normalized to ESR2a and displayed as the fold change relative to the R stage. Values 

represent the mean ± S.E.M. N= 9, 10, 14, 14, and 4, for stages 1-5, respectively, as 

determined by qPCR. Different letters indicate significant differences.  
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Figure 2.8. Liver expression of ESR1 (A), ESR2a (B), ESR2b (C), and VTG1 (D) in 

mummichog with ovaries dominated by cortical alveoli (regressed: R), vitellogenic (V), 

early mature (EM), late mature (fully mature: FM) or ovulated (OV) follicles. Data were 

normalized to 18sRNA and displayed as the fold change relative to the R stage. Values 

represent the mean ± S.E.M. N= 12, 10, 13-14, 12-14, and 4, for stages 1-5, respectively, 

as determined by qPCR. Different letters indicate significant differences.   
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Figure 2.9. Stage specific expression of ESR1 (A), ESR2b (B), FSHr (C), and LHr (D) in 

mummichog with cortical alveoli tissue (stage 1), vitellogenic (stage 2), early mature 

(stage 3), and late mature (stage 4) follicles. Data were normalized to adjusted values of 

ESR2a and displayed as the fold change relative to stage 1. Values represent the mean ± 

S.E.M.  N= 8-9, 8, 9, and 7-8, for stages 1-4, respectively; N= 7 for stage 5 (ESR2b only) 

as determined by qPCR. Different letters indicate significant differences.  
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Figure 2.10 Stage specific expression of StAR (A), CYP11 (B), CYP17 (C), CYP19a1 

(D) in mummichog with cortical alveoli tissue (stage 1), vitellogenic (stage 2), early 

mature (stage 3), and late mature (stage 4) follicles. Data were normalized to adjusted 

values of ESR2a and displayed as the fold change relative to stage 1. Values represent the 

mean ± S.E.M. N= 8-9, 8, 8-9, and 7-8, for stages 1-4, respectively, as determined by 

qPCR. Different letters indicate significant differences. 
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Table 2.4 Unstimulated (basal) and human chorionic gonadotropin (hCG)-stimulated testosterone (T) and maturation inducing steroid 

(MIS) levels from ovarian follicles at different stages of maturation [stage 2 (vitellogenic), stage 3 (early mature), stage 4 (late 

mature)], exposed to solvent control (ethanol; s ctrl) and increasing concentrations of 17α-ethinyl estradiol (EE2). The hormone levels 

are presented as mean ± S.E.M. values (pg/mL). Mean fold increase is shown to compare hCG-stimulated production to basal 

production, per treatment and stage. There are no significant differences in T or MIS production among treatments (solvent control, 50 

nM EE2, 100 nM EE2, 250 nM EE2) per stage, within groups (basal or hCG-stimulated). There are no significant differences in fold 

increase among treatments, per stage. hCG-stimulated hormone production is significantly higher than basal hormone production, per 

stage, for each hormone. Average basal hormone production significantly increases with stage, for each hormone. N = 7-8 for each 

treatment per stage. P-values from statistical tests performed on T and MIS data are found in Supplementary Table S2.2. 
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Hormone EE2  

Treatment 

Stage 2 Stage 3 Stage 4 

Basal hCG+ Fold Increase Basal hCG+ Fold Increase Basal hCG+ Fold 

Increase 

T S Ctrl 8.3 ± 

1.2 

30.3 ± 

4.9 

4.0 ± 0.6 26.2 

± 4.1 

235.5 

± 52.0 

14.1 ± 4.1 66.2 ± 

16.5 

237.2 ± 

59.9 

5.63 ± 

2.4 

50 nM 9.6 ± 

1.1 

24.3 ± 

3.8 

2.0 ± 0.5 25.5 

± 4.2 

143.8 

± 15.7 

9.7 ± 3.9 74.6 ± 

13.2 

193.3 ± 

68.4 

5.05 ± 

2.2 

100 nM 11.8 

± 0.9 

21.5 ± 

3.1 

1.9 ± 0.3 28.7 

± 4.3 

217.4 

± 35.1 

9.5 ± 2.7 64.4 ± 

11.4 

267.0 ± 

58.9 

4.9 ± 1.5 

250 nM 13.5 

± 1.0 

32.3 ± 

6.7 

2.4 ± 0.6 32.8 

± 4.1 

249.4 

± 37.9 

7.6 ± 1.4 61.2 ± 

12.5 

247.6 ± 

47.9 

5.8 ± 1.5 

MIS S Ctrl 1.8 ± 

0.4 

30.8 ± 

17.2 

48.8 ± 20.0 12.2 

± 2.1 

1456.2 

± 

508.8 

216.5 ± 90.7 35.0 ± 

8.4 

247.4 ± 

45.7 

14.9 ± 

5.8 

50 nM 1.9 ± 

0.5 

43.1 ± 

16.9 

46.3 ± 13.4 13.0 

± 3.3 

1220.3 

± 

199.6 

187.0 ± 64.5 36.4 ± 

9.4 

396.3 ± 

126.6 

14.3 ± 

4.0 

100 nM 1.7 ± 

0.4 

24.3 ± 

8.0 

23.1 ± 12.1 12.7 

± 3.1 

1486.1 

± 

436.2 

188.6 ± 53.4  35.7 ± 

8.9 

301.1 ± 

68.3 

19.0 ± 

6.9 

250 nM 2.1 ± 

0.3 

56.7 ± 

18.4 

32.3 ± 9.38 12.9 

± 2.7 

1518.4 

± 

286.9 

135.1 ± 31.7 34.1 ± 

8.8 

485.5 ± 

176.0 

28.3 ± 

10.9 
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Table 2.5 Unstimulated (basal) and human chorionic gonadotropin (hCG)-stimulated P450 aromatase (CYP19a1) and luteinizing 

hormone receptor (LHr) gene expression of ovarian follicles at different stages [stage 1 (cortical alveolus), stage 2 (vitellogenic), stage 

3 (early mature), stage 4 (late mature)] of maturation exposed to solvent control (ethanol; s ctrl) and increasing concentrations of 17α-

ethinyl estradiol (EE2). Gene expression is presented as fold increase to the 0-hour control, per stage, normalized to β-actin (mean ± 

S.E.M). values (pg/mL). One-way ANOVA was completed to assess gene expression of CYP19a1 or LHr among treatments (basal or 

hCG-stimulated 0-hour control, solvent control, 50 nM EE2, 100 nM EE2, 250 nM EE2) per stage. Different letters, or astericks, 

indicate significant differences among treatments, within stages of an individual gene. There were no significant differences among 

treatments, within stages of LHr expression. N = 7-8 for each treatment per stage. (p>0.05, ANOVA followed by Tukey post-hoc test). 

P-values from statistical tests performed on CYP19a1 and LHr data are found in Supplementary Table S2.3. 
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Gene EE2 

Treatment 

Stage 1 Stage 2 Stage 3 Stage 4 

Basal hCG+ Basal hCG+ Basal hCG+ Basal hCG+ 

CYP19a1 O h 1 ± 0.24 *  1 ± 0.15 B  1 ± 0.21 C  1 ± 0.32 A  

S Ctrl 0.23 ± 

0.04 

0.23 ± 

0.06 

0.06 ± 

0.01 A 

1.22 ± 

0.40 B 

0.07 ± 

0.01 A 

6.11 ± 

1.65 B 

0.19 ± 

0.04 A 

5.67 ± 

2.12 B 

50 nM 0.18 ± 

0.02 

0.20 ± 

0.04 

0.07 ± 

0.02 A 

1.82 ± 

0.40 B 

0.09 ± 

0.02 A 

7.37 ± 

1.82 B 

0.27 ± 

0.10 A 

5.90 ± 

1.71 B 

100 nM 0.21 ± 

0.05 

0.18 ± 

0.02 

0.08 ± 

0.02 A 

1.14 ± 

0.27 B 

0.09 ± 

0.02 A 

6.22 ± 

1.26 B 

0.28 ± 

0.07 A 

7.01 ± 

2.38 B 

250 nM 0.18 ± 

0.01 

0.25 ± 

0.04 

0.10 ± 

0.03 A 

1.94 ± 

0.53 B 

0.09 ± 

0.01 A 

5.10 ± 

0.90 B 

0.30 ± 

0.06 A 

7.06 ± 

1.88 B 

LHr O h 1 ± 0.14  1 ± 0.27  1 ± 0.13   1 ± 0.13  

S Ctrl 1.00 ± 

0.14 

1.19 ± 

0.14 

1.18 ± 

0.30 

0.91 ± 

0.20 

0.65 ± 

0.09  

0.62 ± 

0.09 

0.54 ± 

0.13 

0.71 ± 

0.12 

50 nM 1.62 ± 

0.12 

1.10 ± 

0.21 

1.44 ± 

0.51 

0.92 ± 

0.18 

0.86 ± 

0.12 

0.67 ± 

0.11 

0.65 ± 

0.25 

0.59 ± 

0.05 

100 nM 1.30 ± 

0.17 

1.37 ± 

0.09 

1.18 ± 

0.24  

0.69 ± 

0.17 

0.79 ± 

0.11 

0.62 ± 

0.05 

0.63 ± 

0.11 

0.76 ± 

0.16 

250 nM 1.07 ± 

0.13 

1.47 ± 

0.35 

1.18 ± 

0.35 

0.74 ± 

0.14 

0.76 ± 

0.14 

0.71 ± 

0.08 

0.64 ± 

0.12 

0.79 ± 

0.12 
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2.5 Discussion 

This study further develops the estuarine mummichog as a model species for 

understanding the reproductive physiology of teleosts. The study confirmed that, similar 

to other work in mummichog (Lin et al., 1987), E2 is produced by the ovarian follicles 

from the cortical alveolus stage to late maturation, distinguishing this species from many 

other teleosts, in which E2 levels rise from cortical alveolus to completion of 

vitellogenesis and drop prior to maturation (Clelland and Peng, 2009).  It is the first study 

to demonstrate changes in gonadal steroidogenic enzymes and ERs, hepatic VTG1 and 

ERs, and brain aromatase gene expression across the stages of female mummichog 

maturation. The expression of ERs, VTG1 and CYP19a1 are associated with patterns of 

plasma and in vitro E2 levels throughout ovarian development, while CYP17 expression 

is not associated with the patterns of E2. While other studies have suggested that ovarian 

LHr and aromatase gene expression are estrogen-responsive in fish (Liu et al., 2013; 

Lyssimachou et al., 2006), addition of EE2 to in vitro ovarian follicle incubations had no 

effect.  Overall, these studies support the hypothesis that the tolerance exhibited by 

mummichog to exogenous estrogens could be partly attributable to continuously high 

levels of E2 present in the maturing ovary. 

Plasma T and E2 were measured in female mummichog throughout 

recrudescence, in reproductively regressed to ovulating fish; plasma hormone patterns of 

T and E2 were generally similar to those previously demonstrated in mummichog (Lin et 

al., 1987; Shimizu 2003). Plasma T levels were highest in fully mature fish, with no 

significant differences between regressed and early mature stages. This is similar to 

Shimizu (2002), in which plasma levels of T dramatically increased in pre-spawning 
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periods; T levels dropped dramatically during the late spawning-post spawning period 

(Shimizu 2002). Given T’s role as the precursor to E2 in the maturing ovary (Nagahama 

and Yamashita, 2008; Sabet et al., 2009), it is not surprising in the present study that 

higher levels of plasma T generally associated with higher levels of plasma E2. Plasma E2 

levels increased dramatically from regressed to fully mature stages with significant 

differences between the progressive stages of maturation. These findings are similar to 

Shimizu (2002), in which a substantial increase in plasma E2 was demonstrated during 

pre-spawning periods, and eventually dropped significantly during the late-spawning to 

post-spawning period. T and E2 production trends in this study differ from other fish 

species, as plasma T and E2 levels peak during the pre-spawning period in rainbow trout 

(Oncorhynchus mykiss; Whitehead et al., 1978), goldfish (Carassius auratus; Schreck & 

Hopwood, 1974), and caspian kutum (Rutilus kutum; Sabet et al., 2009). Plasma T rose in 

association with E2 and reaching reproductive maturity in common carp (Cyprinus 

carpio; Taghizadeh et al., 2013), and ribbed gunnel (Dictyosoma burger; Hwang et al., 

2012). Plasma T and E2 levels rose in association with vitellogenesis in catfish 

(Heteropneustes fossilis; Lamba et al., 1983), rainbow trout (Zohar and Billard, 1984), 

and Persian sturgeon (Acipenser persicus; Hosseinzade et al., 2012). Plasma E2 levels 

from previous studies ranged from 1500 pg/mL in spring to 11000 pg/mL in the summer, 

750 pg/mL in autumn, and back to 1500 pg/mL in late autumn/early winter (Shimizu et 

al., 2003). Plasma E2 levels from the current study are dependent on stage of ovarian 

development and appear to be expressed at a lower range when compared to Shimizu et 

al. (2003) work; however, this could be caused due to the differences in sub-species of 

mummichog utilized in the studies, as well as differences in methodology. Although 
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difficult to compare between species and studies, plasma E2 levels in mummichog within 

the current study were lower than plasma E2 levels measured in rainbow trout and Persian 

sturgeon during peak production; however, plasma E2 in mummichog were much higher 

than plasma E2 levels in common carp (Hosseinzade et al., 2012; Taghizadeh et al., 2013; 

Whitehead et al., 1978). Reproductive processes in teleost fish are controlled and 

regulated by a balance and interconnectivity among various hormones; these hormones 

also regulate other processes such as growth and development and osmoregulation 

(Menuet et al., 2005; McCormick, 2011; Ramezani-Fard et al., 2013). The association of 

changes in gonadal steroid plasma levels with gonad condition has been proven to be 

valuable in understanding the endocrine control of reproduction in teleosts, as hormone 

levels detected in plasma can be produced from tissues other than the gonads, such as the 

interrenal glands (Cornish, 1998). T and E2 plasma results from the current study suggest 

plasma T and E2 are dependent on the stage of ovarian development, verifies previous 

mummichog work, and confirms T and E2 are regulated differently in mummichog as 

compared to other teleosts.   

T and E2 production were measured from basal (control) and stimulated (with 

hCG: analogue to LH) ovarian in vitro incubations from reproductively maturing fish 

(regressed to ovulating). The in vitro steroid production in regressed ovaries is most 

likely artificially high because of a higher tissue weight per well for regressed ovarian 

tissue compared to vitellogenic follicles. Fold changes of hCG-stimulated to basal steroid 

production, between regressed and vitellogenic ovaries, did not differ; therefore, the 

decline in hormone production seen in vitellogenic follicular in vitro incubations is most 

likely due to the difference in tissue weight per well, and therefore, the interpretation of 
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results is focussed on vitellogenic to ovulated stages. Focussing on vitellogenic to 

ovulated stages, higher levels of unstimulated in vitro T generally associated with high 

levels of unstimulated in vitro E2. Unstimulated in vitro T levels were highest during late 

maturation, and had no significant differences in expression among the vitellogenic, early 

maturation and ovulated stages, whereas E2 levels significantly increased throughout the 

cycle and peaked during early to late maturation. These results are similar to previous 

mummichog work, in which Lin et al. (1987) determined that T production from basal 

follicles peaked during maturational stages, and that E2 production from basal follicles 

consistently increased throughout the cycle and peaked during maturational stages. This 

differs from other teleosts, as a shift is usually present when E2 levels rise throughout the 

earlier stages of the ovarian development cycle, and drop prior to early maturation to 

allow for significantly increased levels of MIS, which are required to complete 

maturation of the oocyte (Nagahama and Yamashita, 2008). This shift was not 

demonstrated in the current study, nor in previous mummichog work (Lin et al., 1987). In 

zebrafish, unstimulated in vitro T and E2 levels increase during growth stages of the cycle 

and drop prior to early maturation (Clelland and Peng, 2009). In vitro T and E2 

progressively rise through the ovarian development cycle and drop during the late stages 

of vitellogenesis in rainbow trout (Breton et al., 1975), amago salmon (Oncorhynchus 

rhodurus; Kagawa et al., 1983), and goldfish (Kagawa et al., 1984). In vitro E2 

production from ovarian follicles across development in mummichog from the current 

study are similar to previous mummichog studies as Lin et al. (1987) demonstrated a 

range of ~900-1500 pg/mL of E2, varying by stage of ovarian development. However, E2 

levels from the current study is much higher than E2 production in amago salmon ovarian 
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follicles (Kagawa et al., 1983). In the current study, unstimulated in vitro T and E2 trends 

associated with their respective plasma trends; this suggests that the majority of T and E2 

produced is from the gonads, similar to most female vertebrates (Thomas, 2008). This 

study confirms previous mummichog studies and suggests that T and E2 production 

correlate with vitellogenesis, as well as with final maturation in mummichog without an 

E2 drop prior to maturation; as noted in the following, this warrants further investigation 

into the regulation of the steroiodgenic pathway during maturation in mummichog.  

This is the first study to measure plasma MIS levels in recrudescing mummichog. 

MIS levels increased significantly from early maturation to ovulating stages, and were 

dissimilar to T and E2 as MIS did not drop off after maturation. These findings from the 

current study are similar to other species such as rainbow trout, in which serum MIS 

levels were highest in female rainbow trout, rockfish (Sebastes taczanowskii) and amago 

salmon undergoing final oocyte maturation and ovulation (Campbell et al., 1980; 

Nagahama et al., 1991; Young et al. 1983), or in ribbed gunnel during spawning and 

post-spawning (Hwang et al., 2012). In the current study, unstimulated in vitro MIS 

trends followed similar trends as MIS plasma, with the exception that in vitro MIS 

increased significantly between vitellogenic and late maturation ovarian follicles, and 

plasma significantly increased between late maturation and ovulation. This suggests a 

time lag between gonadal production and manifestation in the plasma of MIS, perhaps 

due to the low levels of MIS produced relative to T and E2. These findings are similar to 

Lin et al. (1987) which demonstrated that MIS production from stimulated follicles (basal 

MIS levels were non-detectable) peaked during late vitellogenesis – early maturation 

stages. These findings from the current study are also similar to in vitro MIS production 
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trends in other teleosts, even though no dramatic shift in the steroidogenic pathway from 

E2 to MIS was detected prior to oocyte maturation. Follicular MIS levels peak during 

early maturation in zebrafish (Clelland and Peng, 2009), and in maturing and ovulated 

follicles in amago salmon (Young et al., 1983). MIS was confirmed to be the primary 

inducer of GVBD (germinal vesicle breakdown) in amago salmon, rainbow trout and 

goldfish post-vitellogenic oocytes (Nagahama, 1983). This study suggests the rise in MIS 

is the primary event which triggers final oocyte maturation, as opposed to the proceeding 

decline in E2 levels usually found in other teleosts. The action of MIS on final oocyte 

maturation is not direct as it is mediated by a complex interaction of several factors, such 

as cytoplasmic factor and MPF (maturation promoting factor) (Nagahama and 

Yamashita, 2008; Senthilkumaran et al., 2004); therefore, the cause of increasing plasma 

and in vitro MIS levels in ovulating mummichog can be influenced by multiple other 

factors. This study has only considered the presence of T, E2 and MIS across maturation 

in mummichog. Other steroid hormones and gonadotropins, such as progesterone, FSH 

and LH, are involved in ovarian development and can possibly influence the production 

of plasma and in vitro T, E2 and MIS, directly or indirectly (Hosseinzade et al., 2012), 

which warrants further studies.  

hCG-stimulated in vitro T, E2 and MIS hormone production was significantly 

higher than unstimulated in vitro hormone production. hCG is able to stimulate oocyte 

maturation and ovulation in many teleosts, in the same fashion as LH (Harvey and Hoar, 

1979; Zuberi et al., 2011). Oocyte maturation in teleosts is typically first initiated by an 

LH surge in maturing oocytes, which triggers the production of 17α-hydroxyprogesterone 

from the thecal cells, which is then converted into MIS (Nagahama and Yamashita, 2008; 
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Patino and Sullivan, 2002). The current study demonstrated that the steroidogenic 

response of ovarian follicles to hCG is highly dependent on the stage of maturation; early 

mature, followed by late mature ovarian follicles, were most responsive to hCG, as they 

exhibited the highest increase in hormone production from unstimulated in vitro 

production. This differs from previous studies, as Lin et al. (1987) showed a maximal 

increase in hormones T, E2 and MIS in late vitellogenic follicles with FPE (Fundulus 

pituitary extract; acts similar to LH in terms of maturation induction) stimulation; 

however, the differences in stage response could be due to differences between FPE and 

hCG. In other teleosts, such as catfish, hCG production causes maximal production of T 

in maturing follicles, and a maximal production of E2 in vitellogenic follicles (Kagawa et 

al., 1984). Similarly, in amago salmon, SG-G100 (purified chinook salmon 

gonadotropin) could stimulate E2 in vitellogenic follicles, whereas T could be stimulated 

in maturing follicles (Kagawa et al., 1983). Since hCG displays LH bioactivity as it binds 

to gonadal LH receptors and stimulates ovarian development and maturation (Mananos et 

al., 2009), the present study suggests that maturing follicles (primarily early mature) in 

mummichog are most LH-responsive and presumably will have the highest expression of 

LH receptors, which can be confirmed with the gene expression data of LH receptors 

from this study. E2 has been shown to reduce the action of hCG in gonadal incubations of 

goldfish ovaries (Post, 1994). It is worthwhile to further examine how mummichog 

ovaries can consistently respond to hCG with continuously high levels of E2 produced 

until late maturation. 

The current study is the first to examine gene expression changes in the 

steroidogenic enzymes and receptors within the ovary (whole tissue and isolated 
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follicles), liver and brain, across the ovarian development cycle in mummichog (from 

reproductively regressed to ovulating). This study showed differences in expression 

trends between whole ovary tissue and isolated follicles (separated per group), which 

demonstrated different regulation patterns of these steroidogenic enzymes and receptors 

between isolated follicles and whole ovary tissue. The expression results from isolated 

follicles provide an accurate representation of steroidogenic receptor and enzyme activity 

from specific follicular stages (cortical alveolus, vitellogenic, early mature, late mature, 

and ovulated); because mummichog are group-synchronous spawners, ovarian sections 

from regressed, vitellogenic, early mature, fully mature and ovulating fish containing 

follicular mixes (>75% stage-dominant, ~25% other) provide a less precise representation 

of follicular-specific activity. Therefore, the focus of the discussion will be on the 

isolated follicles (by 100% stage). Stage 5 (ovulated follicles) were excluded from 

analysis because expression levels were non-detectable.  

Gene expression of enzymes in the steroidogenic pathway (StAR, CYP11, 

CYP17, and CYP19a1) were measured and characterized across stages in the maturing 

ovary. The steroidogenic pathway is involved in the enzymatic synthesis of sex steroids 

from cholesterol. StAR (aids in the transport of cholesterol across the mitochondrial 

membrane) continues to increase in expression throughout the ovarian development cycle 

and peaks during the later stages. These trends in StAR expression parallel the increasing 

pattern of E2 throughout the stages of maturation. StAR expression in the current study is 

similar to StAR expression in rainbow trout (Sreenivasulu and Senthilkumaran, 2009), 

but differs from zebrafish StAR expression as there are no significant changes in 

expression across all stages in zebrafish (Ings and Kraak, 2006). StAR seems to be 
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associated with ovarian development and E2 production. It is possible that increases in 

StAR expression can also be triggered by LH-mediated signaling pathways. As the 

transport of cholesterol is a rate-determining step for steroidogenesis and StAR is the 

putative key rate-limiting mediator in acute regulation of steroidogenesis (Nagahama and 

Yamashita, 2008; Young et al., 2005), it emphasizes the importance of StAR throughout 

oocyte maturation and its possible role in maintaining high levels of steroidogenic 

precursors, such as cholesterol, pregnenolone, and progesterone. 

CYP11 (converts cholesterol to pregnenolone) expression increases throughout 

the ovarian development cycle, peaks in expression during early maturation, and drops in 

expression during late maturation. These trends in CYP11 expression parallel the 

increasing pattern of E2 throughout the stages of ovarian development discussed 

previously. CYP11 expression is also similar to other teleosts (Kumar et al., 2000) as 

CYP11 in catfish increased from ovarian recrudescence to vitellogenesis (elevations in 

CYP11 expression corresponded to E2 production patterns); however, the current study 

differs from zebrafish expression as CYP11 expression decreased throughout the cycle in 

zebrafish (Ings and Van Der Kraak, 2006). CYP11 is a critical enzyme involved in the 

synthesis of major sex hormones, as it catalyzes the enzymatic reaction following the 

rate-limiting step in steroidogenesis (Kumar et al., 2000). In the current study, CYP11 

follows E2 production patterns as it is associated with oocyte maturation, suggesting 

CYP11 expression may mediate production of final steroidogenic hormones.  

CYP17 (P450 C17: converts pregnenolone to 17α-hydroxypegnenolone and then 

to dehydroepiandrosterone, or converts progesterone to 17α-hydroxyprogesterone and 

then androstenedione) peaks in cortical alveolus staged follicles and remains equally and 
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lowly expressed from vitellogenesis to late maturation. CYP17 trends in mummichog are 

similar to those in zebrafish, where CYP17 expression decreases throughout the ovarian 

development cycle (Ings and Van Der Kraak, 2006); however, CYP17 expression trends 

in the current study differ from catfish expression trends as CYP17 expression in catfish 

spiked within spawning ovaries and dropped during regressed and pre-spawning stages 

(Sreenivasulu and Senthilkumaran, 2009). In the current study, CYP17 in mummichog 

does not appear to parallel E2 levels. CYP17 was described as a critical enzyme involved 

in the initiation of maturational events in fish (Senthilkumaran et al., 2004). Thus, the 

lack of increase in the expression of CYP17 throughout recrudescence in mummichog, 

may be explained by the lack of an E2 to MIS switch at maturation, as the expression 

patterns of CYP17 were previously suggested to have a role in the switch (Clelland and 

Peng, 2009). 

CYP19a1 (P450 aromatase: converts T to E2) had no significant differences in 

expression between the cortical alveolus stage and early maturation stage, and 

demonstrated a decline in expression during late maturation. CYP19a1 expression in the 

current study differs from other teleosts. CYP19a1 is suspected to be an estrogen-

responsive gene; CYP19a1 expression correlates with the onset of ovarian recrudescence 

and vitellogenesis in catfish, closely mirroring E2 production trends (Kumar et al., 2000). 

CYP19a1 expression in zebrafish decreases as the ovarian development cycle progresses 

(Ings and Van Der Kraak, 2006), and dramatically declines in expression after 

vitellogenesis in catfish (Kumar et al., 2000) and rainbow trout (Gohin et al., 2010). In 

catfish, CYP19a1 had the most dramatic increase in expression during recrudescence and 

vitellogenesis, when compared to the other P450 enzymes (Kumar et al., 2000), 
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suggesting CYP19a1 is potentially the most crucial enzyme involved in regulating 

hormones (such as E2) for ovarian recrudescence and vitellogensis. This holds true in the 

current study on mummichog as the expression pattern parallels the increasing pattern of 

E2 throughout the stages of ovarian development until early maturation; however, the 

drop off in CYP19a1 expression at late maturation does not follow E2 patterns and 

warrants further studies to determine what may be causing the drop-off in CYP19a1.   

P450 aromatase is also expressed in the brain (CYP19b), which showed no 

significant differences in expression across ovarian development. Because P450 

aromatase is a key enzyme associated with E2 regulation and ovarian development, it was 

important to assess the expression in brain, in addition to the ovary. P450 aromatase was 

similarly expressed between ovary and brain, with the exception that brain expression of 

CYP19b was continuous throughout ovarian development, including ovulation. This 

indicates regulation of local brain E2 production is independent of gonadal 

steroidogenesis, as CYP19b is related to estrogen-dependent neurogenesis, which is 

continuous through adulthood in fish (Forlano et al., 2001; Pellegrini et al., 2007).  

This is the first study to measure gene expression of estrogen receptors (ESR1, 

ESR2a, and ESR2b) across stages in maturing ovary of mummichog. E2 signaling 

pathways involve binding to the different subunits of estrogen receptors in target organs 

to stimulate biological activity (Hall et al., 2001; Nagler et al., 2012). The pattern of ER 

expression should correlate with E2 biological function and regulation; however, ERs 

could be down-regulated in some tissue as E2 increases to regulate E2 effects. For 

example, ERs in goldfish ovary, liver and brain demonstrated differential patterns of all 

ER-subtype expression during ovarian development, potentially altering ER-mediated 
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processes across tissues (Marlatt et al., 2008). RT-PCR was applied to determine the 

tissue distribution of ERs in mummichog and found that all ER subtypes were primarily 

found in the gonad or liver of males and females, but sex differences in mRNA levels 

were gene- and tissue-specific (Greytak and Callard, 2007). 

Follicular expression of ESR1 paralleled E2 trends, as ESR1 expression had no 

significant differences between the cortical alveoli and early mature stages, and then 

significantly decreased in expression during late maturation. ESR1 is the only subtype 

that has been linked to biological function, i.e. vitellogenin synthesis in liver and E2 

regulation in ovary (Chakraborty et al., 2011). ESR1 trends are generally similar to 

Greytak and Callard (2007)’s study which demonstrated an increase in ovary ESR1 

expression in reproductively active female mummichog, compared to reproductively 

inactive female mummichog. Mummichog ESR1 expression in the current study is also 

similar to other teleosts, as Nagler et al. (2012) demonstrated low and relatively 

unchanging ESR1 expression in the ovary of rainbow trout. ESR2a expression in the 

current study remained stable across the stages in ovary, whereas ESR2b expression 

peaked in the cortical alveolus stage and decreased throughout the cycle. ESR2a 

expression patterns generally follow Greytak and Callard (2007)’s study as they 

demonstrated no changes in expression between reproductively active or inactive gonadal 

ESR2a expression; however, ESR2a expression patterns from the current study do not 

follow patterns in other teleosts such as rainbow trout. Mummichog ESR2b expression 

patterns from the current study do not follow Greytak and Callard (2007)’s study as they 

demonstrated no changes in expression between reproductively active or inactive gonadal 

ESR2b expression; however, mummichog ESR2b expression patterns from the current 
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study are similar to other teleosts (Nagler et al., 2012). Nagler et al. (2012) also showed 

that ESR2a was expressed much higher than ESR2b, with both ERβ subtypes having 

expression which peaked during earlier stages in follicular development and gradually 

decreased until spawning began. In the current study, the various estrogen receptor 

subtypes other than ESR1, are expressed differently throughout the cycle, in differing 

tissues, and are not always associated with the pattern of E2. The function of ERβ 

subtypes has not been determined, but ERβ subtypes can be further examined in various 

tissues to determine whether their expression across the ovarian development cycle 

correlates to endocrine mediators, such as gonadotropins, steroids, or intracellular 

regulators.  

ESR1 and VTG1 expression in the liver were associated with E2 regulation, in 

which ESR1 expression was highest during ovulation, and VTG1 expression peaked 

during ovulation. Vitellogenin (a female-specific lipoprotein) is synthesized in the liver 

under the stimulation of ovarian E2 and is secreted into the blood and transported to the 

ovary where it is taken up into the oocytes to stimulate egg yolk protein production 

during development of the oocyte (Hoar et al., 1983). It is expected that ESR1 expression 

in the liver will be associated with VTG1 expression, as ESR1 is linked to E2 function. 

Hepatic ESR1 expression in mummichog in the current study differed from other teleosts, 

as ESR1 expression in rainbow trout remained fairly static until the end of the spawning 

period, and then significantly increased in post-spawning fish (Nagler et al., 2012). 

VTG1 expression, on the other hand, corresponds to other teleosts as VTG1 expression in 

zebrafish liver is tightly coupled to an increase in E2 activity within maturing females 

(Levi et al., 2009). In the current study, hepatic ESR2a peaked during the cortical 
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alveolus stage and decreased throughout the cycle, whereas ESR2b peaked during 

vitellogenesis and had low expression across all other stages. Neither ESR2a nor ESR2b 

patterns follow expression patterns in other teleosts. In rainbow trout, ESR2a had a 

significant peak in expression in regressed stages, and ESR2b showed a sharp decrease in 

regressed stages (Nagler et al., 2012). These results from the current study suggest that 

ESR1 expression is closely related to E2 levels and vitellogenin expression within 

mummichog; the relationships for estrogen receptors ERβ1 and ERβ2 with ovarian 

development are still unclear. 

Gonadotropin receptors (FSHr and LHr) expression was measured and 

characterized across stages in the maturing ovary. Gonadotropins are regulated through 

the expression of their corresponding receptors; expression of the gonadotropin receptor 

genes vary with reproductive state, partly due to feedback of FSH, LH and steroids 

including E2, T and MIS (Moles et al., 2007). In the current study, follicular expression 

of FSHr peaked during vitellogenesis and had low expression in all other stages. These 

follicular FSHr results corresponded to previous mummichog work (Ohkubo et al., 

2013), which demonstrated a peak in follicular FSHr expression during vitellogenesis as 

well. The follicular FSHr results from the current study also corresponded with other 

teleosts, as FSHr expression is expected to peak near vitellogenesis and drop prior to 

maturation (Clelland and Peng, 2009). In zebrafish, FSHr increased from the primary 

growth stage to vitellogenesis, where it peaked (Kwok et al., 2005). FSH is primarily 

involved in regulating gonadal steroidogenesis in the early ovarian developmental stages, 

especially during vitellogenesis (Ohkubo et al., 2013; Swanson et al., 1991). FSH’s 

dominant role in vitellogenesis is to stimulate E2 production and release from ovarian 
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follicles (Nagahama and Yamashita, 2008); it also influences the increase in P450 

aromatase expression in vitellogenic follicles, as noted in brown trout (Montserrat et al., 

2004). These expression trends from the current study suggest that FSHr correlates to 

FSH is presumed actions on steroidogenesis during follicular growth and vitellogenesis; 

however, FSHr is not associated with the increasing E2 levels in maturing mummichog 

follicles. It may be that once stimulated, E2 levels are maintained by other factors 

including intracellular receptors, cAMP (cyclic adenosine monophosphate) / pKA 

(protein kinase A) pathway factors and calcium channels involved in intracellular signal 

transduction pathways (Matagne et al., 2005; Menuet et al., 2005). 

Follicular LHr expression patterns exhibited low expression during the cortical 

alveolus stage, a peak in expression during vitellogenesis to early mature stages, and no 

significant differences in expression between vitellogenesis to late maturation stages. The 

follicular LHr results from the current study did not correspond to previous mummichog 

work, as Ohkubo et al. (2013) demonstrated a peak in follicular LHr expression during 

early maturation and low expression during vitellogenesis, and late maturation. A reason 

for the discrepancy could be due to methodological differences as cortical alveolus staged 

follicles were included in a separate analysis in Ohkubo et al. (2013)’s study. 

Alternatively, the follicular LHr expression trends from the current study did correspond 

to other teleosts. In zebrafish, LHr expression was low during the early stages of the 

ovarian developmental cycle, but was significantly higher during vitellogenesis, and 

peaked prior to oocyte maturation (Kwok et al., 2005). LH primarily regulates the final 

stages of ovarian development and spawning (Breton et al., 1998; Tyler et al., 1997), 

partially due to its ability to stimulate MIS production from ovarian follicles (Clelland 
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and Peng, 2009; Nagahama and Yamashita, 2008). The surge in LH prior to maturation is 

what is believed to cause the steroidogenic shift in E2 to MIS commonly found in teleosts 

(Nagahama and Yamashita, 2008), as LH is said to inhibit the production of E2 prior to 

maturation (Planas et al., 2000); however, mummichog continue to produce increasing 

amounts of E2 with a high expression of LHr in maturing follicles. In the current study, 

LHr expression is associated with hCG stimulation activity of in vitro hormone 

production, with the exception that LHr is highest in vitellogenic and early maturation 

follicles, whereas hCG stimulation caused the largest increase in hormone production 

within early maturation and late maturation follicles. This could indicate that the increase 

in gonadotropin receptors is required before the increase in gonadotropin occurs. It would 

be beneficial to analyze FSH and LH levels across maturation in mummichog in further 

studies to determine whether gonadotropin levels correlate with the patterns of their 

receptors. The present study suggests that similar to other species, LHr expression 

correlates to MIS levels and LH stimulation of maturation and this relationship is 

independent of an E2 decline. 

Basal and hCG-treated ovarian follicles, grouped by stage of ovarian 

development, were exposed to 50-250 nM of EE2 for 24 hours, in vitro. The experiment 

sought to examine the effect of EE2 on the in vitro production of T and MIS, and on the 

gene expression of CYP19a1 and LHr. The goal was to provide insight on whether 

tolerance exhibited by mummichog in vivo to exogenous estrogens may be partly 

attributable to a lack of response to EE2 at the level of the ovary. The rationale for the 

experimental design (concentration range and exposure time) was from previous in vitro 

exposures of fish ovarian and liver cells to EE2. Hepatic cells in rainbow trout 
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demonstrated a 20-30% increase in expression change of VTG1 to 1-10 nM of EE2 in 

vitro after 24 hours (Hultman et al., 2015); zebrafish hepatocytes demonstrated a 1- to 

10-fold increase in ER and VTG1 expression with 100 nM of EE2 in vitro for 24 hours 

(Eide et al., 2014); and zebrafish ovarian cells demonstrated approximately a 10-fold 

increase in LHr expression with 5 µM EE2 in vitro for 24 hours (Liu et al., 2013). 

Adult female mummichog responses are generally resistant to in vivo EE2 

exposure compared to other fish species. For example, egg production is not decreased at 

nominal concentrations of 100 ng/L, or 84.1 ± 6.0% of nominal, for 28 days (Bosker et 

al., 2016), female plasma E2 levels were not affected after a 14-day exposure to 250 ng/L 

of EE2 (Doyle et al., 2013), and male and female plasma T levels were not affected after 

a 14-day exposure to 500 ng/L (nominal) of EE2, or 247.9 ± 12.3 (average) ng/L (Hogan 

et al., 2010). There was no effect of EE2 in the current study on either T or MIS 

production (E2 was not measured due to high cross-reactivity to EE2 in the EIA analysis), 

or gene expression (CYP19a1 and LHr) at any follicular stage. The results validate the 

hypothesis that mummichog are more tolerant to EE2 than other teleosts. Liu et al. (2013) 

conducted a 24 h EE2 in vitro exposure at 5 µM on zebra fish ovarian cells, causing an 

approximate 10-fold increase in LHr expression; the ED50 (median effective dose) for 

EE2 was 17.9 pM at 1.5 hours, which was similar to the ED50 of E2 (exposed at 5 nM).  

hCG stimulation increased both hormone production and CYP19a1 expression in 

incubated follicles. That hCG stimulation did not increase LHr expression at any stage of 

maturation (cortical alveolus – late mature) was unexpected, as MIS levels did increase 

with hCG stimulation. In Liu et al.’s (2013) study, the use of hCG resulted in an increase 

in LHr expression in zebrafish; there was a 5-fold increase in LHr expression with only 



www.manaraa.com

96 
 

hCG stimulation, and an 8-fold increase in LHr expression with a combination of hCG 

and 5µM EE2. Expression patterns of other steroidogenic enzymes can be explored to 

provide insight on this discrepancy, such as 20β-HSD, which should increase in 

expression after the induction of LH or hCG during oocyte maturation (Senthilkumaran et 

al., 2002).The hormone and gene expression results after EE2 in vitro exposure adds 

weight to the idea that mummichog ovarian follicles are resistant to exogenous estrogen, 

and the previous work in the current study suggests high levels of E2 in maturing follicles 

may cause this lack of sensitivity. It would be beneficial to further explore the extent of 

EE2, in vitro, on mummichog ovarian follicles, with a broader concentration range and a 

number of incubation time periods. The explanation for the lack of increase in LHr 

expression with hCG also needs to be further explored as it could be contributing to the 

lack of response to EE2 in mummichog.  
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2.6 Conclusions  

The current study provides confirmation of a continuously increasing production 

of E2 in maturing follicles, supplemented by new molecular analysis of the gene 

expression of key steroidogenic enzymes and hormone/gonadotropin receptors across the 

ovarian steroidogenic pathway in mummichog. These differences exhibited in 

mummichog ovarian development, along with no effect of exposure to EE2 on maturing 

follicles, support the hypothesis that high estrogen levels during oocyte maturation may 

be responsible for reduced sensitivity in mummichog to environmental estrogens. I.e. the 

exposure of mummichog in vivo to EE2 does not manifest in molecular or biochemical 

changes in the ovary, which in other fish is associated with cessation in egg production or 

altered physiological steroid levels, as the ovary is adapted to continuous levels of E2 

during maturation.  
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Appendix A: Supplementary Material 

Adjusting Normalizing Gene Calculation 

When no gene was found to be steadily expressed across stages, such as in experiment 1C 

(EE2 in vitro exposure), the gene that was most steadily expressed was adjusted through a 

calculation (Ings and Van Der Kraak, 2006) to have constant expression. The calculation 

is as follows: 

Adjusted Value = 
𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝐼𝑛𝑝𝑢𝑡 𝑉𝑎𝑙𝑢𝑒

𝑀𝑒𝑎𝑛 𝐺𝑟𝑜𝑢𝑝 𝐼𝑛𝑝𝑢𝑡 𝑉𝑎𝑙𝑢𝑒 ÷ 𝑀𝑒𝑎𝑛 𝑜𝑓𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐺𝑟𝑜𝑢𝑝 𝐼𝑛𝑝𝑢𝑡 𝑉𝑎𝑙𝑢𝑒 
 

Reference group refers to the treatment group chosen to which to adjust all other 

treatment groups. For instance, stage 1 was chosen as the reference group.  

Stage 1 Mean = 0.0318 

Stage 2 Mean = 0.0038 

Stage 2 individual value example (fish #10) = 0.0042 

Final adjusted value example (fish #10) = 0.0355 

Standard Curve Equation Values 

Table S2.1 Slope and y-intercept from standard curves of all primers used in this study. 

Enzyme/Receptor Gene Tissue Slope Y-Intercept 
P450 Aromatase Brain CYP19b Brain -3.3379 25.396 

Elongation Factor 1α EF1α Brain -3.7111 18.86 

Estrogen Receptor α ESR1 Liver -3.5421 24.344 

Estrogen Receptor β1 ESR2a Liver -3.7906 27.974 

Estrogen Receptor β2 ESR2b Liver -3.2274 26.309 

Vitellogenin VTG1 Liver -3.7368 14.545 

18s RNA 18sRNA Liver -3.7313 9.4068 

Estrogen Receptor α  ESR1 Ovary -3.1784 28.321 

Estrogen Receptor β1  ESR2a Ovary -3.4627 27.244 

Estrogen Receptor β2 ESR2b Ovary -3.3403 26.485 

Follicle Stimulating Hormone 

Receptor 

FSHr Ovary -3.3691 26.8 

Luteinizing Hormone Receptor LHr Ovary -3.5261 26.57 

Steroidogenic Acute Regulatory 

Protein 

StAR Ovary -3.1238 26.84 

P450 Side Chain Cleavage CYP11a1 Ovary -3.2424 24.798 

P450 C17 CYP17a1 Ovary -3.0117 27.577 

P450 Aromatase CYP19a1 Ovary -3.4627 24.672 

β-Actin Actin Ovary -3.2588 16.477 
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Normalizing Genes 

 

Figure S2.1. Expression (raw input values) of ESR2a in mummichog whole ovaries 

dominated by cortical alveoli (regressed: R), vitellogenic (V), early mature (EM), late 

mature (fully mature: FM) or ovulated (O) follicles. Values represent the mean ± S.E.M.  

(N = 9, 10, 14, 14, 4 for stages 1-5, respectively) as determined by qPCR. There were no 

significant changes across expression. (p = 0.298, ANOVA followed by Tukey post-hoc 

test). 
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Figure S2.2. Expression (raw input values) of 18sRNA in liver tissue from mummichog 

with ovaries dominated by cortical alveoli (regressed: R), vitellogenic (V), early mature 

(EM), late mature (fully mature: FM) or ovulated (OV) follicles. Values represent the 

mean ± S.E.M. N = 12, 10, 14, 14, 4 for stages 1-5, respectively, as determined by qPCR. 

There were no significant changes across expression. (p = 0.547, ANOVA followed by 

Tukey post-hoc test). 
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Figure S2.3. Expression (raw input values) of EF1α in brains from mummichog with 

ovaries dominated by cortical alveoli (regressed: R), vitellogenic (V), early mature (EM), 

late mature (fully mature: FM) or ovulated (OV) follicles. Values represent the mean ± 

S.E.M. N = 12, 11, 15, 14, 4 for stages 1-5, respectively, as determined by qPCR. There 

were no significant changes across expression. (p = 0.726, ANOVA followed by Tukey 

post-hoc test).  
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Additional Methods FlowCharts and Diagrams  

 

Figure S2.4. Simplified flowchart of experimental protocols undertaken for hormone 

analysis (plasma and in vitro), histology, and gene expression of whole tissue (ovary, 

liver, and brain), explained in sections 2.3.2 of the methods. 
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Figure S2.5. Simplified flowchart of experimental protocols undertaken for hormone 

analysis and gene expression of separated ovarian follicles after a 24-hour EE2 in vitro 

exposure, explained in sections 2.3.4 of the methods. 
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Figure S2.6. Example in vitro plate setups for hormone analysis of basal and hCG 

(human chorionic gonadotropin)-treated follicles across ovarian development (A), 

explained in methods section 2.3.2 ii, and for hormone and gene analysis of the EE2 in 

vitro exposure of ovarian follicles across ovarian development (B), explained in methods 

section 2.3.4 ii.   

B 

A 
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Brain Gene Expression Analysis 

 

Figure S2.7. Expression of CYP19b in brains from mummichog with ovaries dominated 

by cortical alveoli (regressed: R), vitellogenic (V), early mature (EM), late mature (fully 

mature: FM) or ovulated (OV) follicles. Values represent the Mean ± S.E.M. N = 12, 11, 

15, 14, 4 for stages 1-5, respectively, as determined by qPCR. Data were normalized to 

EF1α and displayed as the fold change relative to the R stage. There were no significant 

changes across expression. (p = 0.256, ANOVA followed by Tukey post-hoc test). 
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Table S2.2. P-Values from statistical tests performed on T (testosterone) and MIS 

(maturation inducing steroid) hormone data from 24-hour in vitro ovarian follicles at 

different stages of development [stage 2 (vitellogenic), stage 3 (early mature), stage 4 

(late mature)] incubations with EE2 treatments (control, solvent control, 50 nM EE2, 100 

nM EE2, 250 nM EE2) between groups (basal or hCG-stimulated). 

Hormone/ 

Stage 

2-way ANOVA 

(Stage & Basal 

Treatments) 

1-way 

ANOVA 

(Stages from 

Basal only) 

1-way ANOVA 

(Basal EE2 

Treatments) 

1-way 

ANOpVA 

(hCG+ EE2 

Treatments) 

1-way ANOVA 

(Fold Increase) 

T 0.822 0.00    

2   0.114 0.513 0.088 

3   0.093 0.363 0.281 

4   0.669 0.574 0.939 

MIS 0.779 0.00    

2   0.884 0.439 0.208 

3   0.258 0.688 0.842 

4   0.976 0.981 0.834 

 

Table S2.3. P-Values from statistical tests performed on CYP19a1 (P450 aromatase) and 

LHr (luteinizing hormone receptor) gene expression data from 24-hour in vitro ovarian 

follicles at different stages of development [stage 1 (cortical alveolus), stage 2 

(vitellogenic), stage 3 (early mature), stage 4 (late mature)] incubations with EE2 

treatments (basal or hCG-stimulated: control, solvent control, 50 nM EE2, 100 nM EE2, 

250 nM EE2). 

Gene Stage 1-way ANOVA among 

Treatments within Stage 

CYP19a1 1 0.00 

 2 0.03 

 3 0.00 

 4 0.00 

LHr 1 0.21 

 2 0.71 

 3 0.09 

 4 0.43 
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3.1 Summary  

This thesis further develops the estuarine mummichog as a model species for 

understanding the reproductive physiology of teleosts. It has been confirmed that, similar 

to other work in mummichog (Lin et al., 1987), 17β-estradiol (E2) is produced by the 

ovarian follicles from the regressed (cortical alveolus) stages to late maturational stages, 

distinguishing this species from many other teleosts, in which E2 levels rise from cortical 

alveolus to completion of vitellogenesis and drop prior to maturation (Clelland and Peng, 

2009). In most teleost fish, there is a marked shift from estrogens (such as E2) to 

progestogens (such as maturation inducing steroid; MIS) as follicles progress to early 

maturation. However, in mummichog there is no shift detected, as levels of E2 are 

consistently higher in all stages of follicular development. Mummichog have also been 

noted to be more tolerant to exogenous estrogen exposure, such as 17α-ethinyl estradiol 

(EE2), compared to commonly studied teleosts; most freshwater species will respond to 

environmentally-relevant concentrations (Armstrong et al., 2016), whereas mummichog 

respond to much higher concentrations (if at all) (Bosker et al., 2016). The differences in 

ovarian physiology and EDC (endocrine disrupting compound) responses amongst 

species led to the hypothesis that provides the foundation for this thesis, which is that 

continuous high levels of E2 produced in the maturing mummichog ovary may be a 

reason for the species’ increased tolerance to EE2 exposure. 

Plasma (from blood), ovary, liver and brain tissue, and ovarian follicles, were 

collected from maturing mummichog and grouped into five stages of maturation; 

follicular steroid production and/or gene expression in hormone signaling and 

steroidogenic pathways were assessed by stage. Plasma and follicular production of E2 
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increased as the ovarian development cycle progressed, and dropped after maturation; 

MIS, however, was equally expressed during development and early maturation stages, 

and increased in late maturation and ovulation stages. T (testosterone) levels 

corresponded with E2 trends, whereas MIS peaked during late maturational stages. This 

study also demonstrated that the steroidogenic response of ovarian follicles to hCG 

(human chorionic gonadotropin) is highly dependent on the stage of maturation; early 

mature, followed by late mature ovarian follicles, were most responsive to hCG. Because 

hCG mimics LH (luteinizing hormone) bioactivity, as it binds to gonadal LH receptors 

(LHr) and stimulates ovarian development and maturation (Mananos et al., 2009), the 

present study suggests that maturing follicles (primarily early mature) in mummichog are 

the most LH-responsive. This study suggests that T and E2 production correlates with 

vitellogenesis and final maturation in mummichog, whereas MIS correlates only with 

final maturation, with no E2 drop prior to maturation. 

The current study is the first to examine changes in gene expression of 

steroidogenic enzymes and receptors within the ovary (whole tissue and isolated 

follicles), liver and brain, across the ovarian development cycle (from reproductively 

regressed to ovulating) in mummichog. StAR (steroidogenic acute regulatory protein; 

aids in the transport of cholesterol across the mitochondrial membrane), CYP11 (P450 

side-chain-cleavage; converts cholesterol to pregnenolone), and LHr (luteinizing 

hormone receptor; surge in LH prior to maturation is believed to be the main mediator 

causing the steroidogenic shift in E2 to MIS) (Nagahama and Yamashita, 2008) follow 

similar expression patterns as found in other teleosts. StAR and CYP11 follow the 

general pattern of increasing E2 throughout the stages of maturation, whereas LHr shows 
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an increase in expression, primarily with maturation. LH is said to inhibit the production 

of E2 prior to maturation (Planas et al., 2000); however, mummichog continue to produce 

increasing amounts of E2 with a high expression of LHr in maturing follicles. 

Differences between mummichog and other teleosts in maturational gene 

expression include the expression of P450c17 (catalyzes the hydroxylation of 

pregnenolone to yield 17α-hydroxypregnenolone and then dehydroepiandrostone, or the 

hydroxylation of progesterone to yield 17α-hydroxyprogesterone and then 

androstenedione), which drops earlier in the maturation cycle; follicle stimulating 

hormone receptor (FSHr; key gonadotropin responsible for ovarian development), which 

has low expression in the cortical alveolus stage; P450 aromatase (converts T to E2), or 

CYP19a1, which is evenly expressed through all stages prior to dropping at late 

maturation; and estrogen receptor α (ESR1; the only estrogen receptor subtype that has 

been linked to vitellogenin synthesis in liver and E2 regulation (Chakraborty et al., 

2011)), which has no significant differences in expression over the ovarian development 

stages, prior to dropping at late maturation. CYP19a1 and ESR1 follow the general 

increasing pattern of E2 throughout the stages of maturation, whereas CYP17 and FSHr 

do not. The lack of increase in the expression of CYP17 throughout recrudescence in 

mummichog may be explained by the lack of an E2 to MIS switch at maturation, as the 

expression patterns of CYP17 were previously suggested to have a role in the switch 

(Clelland and Peng, 2009). CYP19a1 is suspected to be an estrogen-responsive gene; the 

drop off in CYP19a1 expression at late maturation does not follow E2 patterns and 

warrants further studies to determine what may be causing the decrease in CYP19a1. 

CYP19b (P450 aromatase in brain) on the other hand, showed no significant differences 
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in expression across ovarian development, suggesting regulation of local brain E2 

production is independent of gonadal steroidogenesis. The results from this study suggest 

that ESR1 expression is closely related to E2 levels and vitellogenin expression within 

mummichog; however, the relationships for estrogen receptors ER2a and ER2b with 

ovarian development are still unclear. 

To determine EE2 effects on maturing follicles, grouped follicles were exposed to 

50-250 nM of EE2 for 24 hours, in vitro, with and without hCG stimulation. There was no 

effect on either T or MIS production (E2 was not measured due to high cross-reactivity to 

EE2 in the EIA analysis), or gene expression (CYP19a1 and LHr) at any follicular stage. 

The results validate the hypothesis that mummichog are more tolerant to EE2 than other 

teleosts, as previous studies demonstrated an increase in LHr expression in zebrafish 

ovarian cells after EE2 in vitro exposure (Liu et al., 2013). hCG stimulation increased 

both hormone production and CYP19a1 expression in incubated follicles. It was 

unexpected, however, that hCG stimulation did not increase LHr expression at either 

stage of maturation (cortical alveolus – late mature), as MIS levels did increase with hCG 

stimulation and Liu et al.’s (2013) study demonstrated hCG caused an increase in LHr 

expression. The hormone and gene expression results after EE2 in vitro exposure adds 

weight to the idea that mummichog ovarian follicles are resistant to exogenous estrogen. 

Overall, the current study provided confirmation of a continuously increasing 

production of E2 in maturing follicles, supplemented by new molecular analysis of key 

steroidogenic enzymes and hormone/gonadotropin receptors across the ovarian 

steroidogenic pathway in mummichog. These results, along with no effect of exposure to 

EE2 on maturing follicles, support the hypothesis that high estrogen levels during oocyte 
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maturation may be responsible for reduced sensitivity in mummichog to environmental 

estrogens. However, the mechanism behind the correlation of high estrogen levels during 

oocyte maturation and reduced sensitivity to exogenous estrogens need to be explored 

further.  

3.2 Future Directions 

It has been demonstrated that mummichog are fairly resistant to exogenous 

estrogens such as EE2, when compared to commonly-studied teleost species. Growth and 

reproductive processes in freshwater teleosts, such as fathead minnow (Pimephales 

promelas), zebrafish (Danio reiro), and Chinese rare minnow (Gobiocypris rarus), are 

negatively impacted by exogenous estrogens at environmentally-relevant EE2 

concentrations (ex. 0.1-10 ng/L) (Armstrong et al., 2016; Kidd et al., 2007; Lin and Janz, 

2006; Parrott and Blunt, 2005; Zha et al., 2008). However, mummichog respond to much 

higher concentrations at 100 ng/L or higher (if at all) (Bosker et al., 2016; Gillio Meina et 

al., 2013; Hogan et al., 2010). Currently, the reason for this species-specific sensitivity 

with EE2 is unknown. This thesis aimed to determine if continuously high levels of E2 

present in maturing mummichog ovarian follicles were partially responsible for the 

decreased sensitivity to EE2; results from this thesis have supported this hypothesis. In 

order to further investigate this suggestion, similar experiments from this thesis can be 

conducted on teleosts that are generally more tolerant to EE2 exposure, such as 

sheepshead minnow (Cyprinodon variegates; Zillioux et al., 2001), in order to determine 

if similar patterns of E2 regulation exist during ovarian development.  

The experimental work on EE2 in vitro exposure of mummichog ovarian follicles 

paves the way for more in vitro analysis on the mechanisms of EE2 action. In vitro 
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exposures of staged ovarian follicles to EE2 have not been completed on any fish species. 

The concentrations used in the current study were chosen after a thorough literature 

research on previous EE2 in vitro exposures conducted on hepatic or ovarian tissue/cells. 

The lack of effect of EE2 on P450 aromatase (CYP19a1), LHr gene expression, or on T 

and MIS hormone production suggests that mummichog ovarian follicles are resistant to 

EE2 exposure at 50-250 nM. It would be beneficial to assess the effect of EE2 at a broader 

concentration range (e.g., 10 pM – 10 uM), as this range is commonly found in EDC in 

vitro exposures (Beitel et al., 2015; Eide et al., 2014; Hultman et al., 2015; Liu et al., 

2013), or to run a concentration-response curve prior to choosing a new concentration 

range. It would also be beneficial to assess the effect of EE2 in vitro in mummichog 

follicles across a time course from 0 – 24 hours, at much shorter and intermediary 

intervals, to determine if there are any molecular effects occurring at a shorter time 

period than 24 hours. This is because EDCs can act on a molecular level within minutes 

(membrane receptors) or hours (nuclear receptors) (Thomas, 2008) and as well that 

effects can be transient (Shanle and Xu, 2011; Vandenberg et al., 2012). In the current 

study, expression of CYP19a1 decreased after the 24-hour incubation, and although LHr 

expression did not decrease after the 24-hour incubation, it is important to determine 

what is happening to CYP19a1 expression before the 24-hour time period, as changes in 

expression can occur rapidly and are transient. Noting these changes in expression prior 

to the 24-hour incubation time point can be vital in determining the rate of perturbation 

on CYP19a1 expression across stages of follicular development. Perhaps there is an 

important piece missing with changes in LHr expression as well, which might provide 

insight on why LHr expression does not decrease after 24 hours of incubation, or increase 
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with hCG stimulation. A positive control could also be added to this study to confirm the 

effect of EE2 on the measured endpoints. Because the mechanism of EE2 on mummichog 

ovarian follicles is not yet known, zebrafish follicles could be used as a positive control 

as it was demonstrated that EE2 has a negative effect on LHr expression in zebrafish 

ovarian cells (Liu et al., 2013). 

As previous EE2 in vitro exposures have been completed on hepatic cells (Beitel 

et al., 2015; Eide et al., 2014), it would also be interesting to conduct an EE2 in vitro 

exposure on liver tissue sampled at various stages of ovarian development, while 

assessing vitellogenin and ERα expression changes. Brain sections could also be 

dissected at various stages of ovarian development, to assess P450 aromatase in the brain, 

as well as gonadotropin receptors and/or estrogen receptors. The data could be analyzed 

alongside gene expression data from the current study measured in liver and brain at 

different stages of ovarian development. This research could then be utilized to compile a 

better understanding of how EE2 is affecting, or not affecting, mummichog through the 

HPG axis.  

In the current study, key receptors and enzymes in the steroidogenic pathway in 

mummichog were characterized by molecular analysis for the first time. This work is 

important to support further development of the mummichog model for EDC bioassay 

work. Estrogen receptors, gonadotropin receptors, vitellogenin, StAR and P450 enzymes 

were characterized across ovarian development in mummichog; however, there are still 

some important genes in the steroidogenic pathway which could be characterized, such as 

20β-HSD (20β-hydroxysteroid dehydrogenase), which catalyzes the conversion of 17α-

hydroxy progesterone to produce MIS (Young et al., 2005). As high levels of MIS 
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coincide with high levels of E2 in mummichog, it would be interesting to see how 20β-

HSD (20β-hydroxysteroid dehydrogenase) is expressed across maturation. The current 

study, along with previous work, emphasizes the importance of developing a thorough 

understanding of comparative endocrinology and physiology among model teleost 

species used in EDC studies. There are other endpoints which can be measured across the 

ovarian development cycle in order to develop a full working model of mummichog; 

these endpoints include furthering the molecular characterization of steroidogenic 

enzymes, signaling pathways, and also more hormones and gonadotropins, etc. (Table 

3.1). Measuring the levels of FSH and LH through EIA (enzymatic immunoassay) 

analysis will be beneficial to see what is happening to these gonadotropins and whether 

their levels correspond with receptor expression. Since LHr showed no increase in 

expression after hCG stimulation in the current study, an analysis of the gonadotropin LH 

with EE2 exposure across ovarian development may provide more insight into this 

question. Filling in the knowledge gaps for mummichog physiology, as well as expanding 

on EE2 exposure studies, will bring us closer to determining the mechanisms of tolerance 

of estrogenic EDCs in mummichog. 
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Table 3.1. Gap analysis chart of endpoints for developing the mummichog model across 

the ovarian development cycle. Endpoints highlighted in green have been completed in 

this study; endpoints highlight in pink have not been completed by any study. 

Characterization of 

Hormones, 

Gonadotropins, etc. 

Molecular 

Characterization of 

Signaling Pathways 

Molecular 

Characterization of 

Steroidogenic Enzymes 

E2 ERα StAR 

T ERβ1 P450scc 

MIS ERβ2 P450c17 

FSH VTG1 P450arom 

LH FSHr 3β-HSD 

VTG LHr 11β-HSD 

Progesterone G-protein coupled receptor 17β-HSD 

Intracellular cAMP levels  20β-HSD 

PKA levels   

 

Further studies need to be completed in order to determine the mechanistic reason 

for why higher E2 levels during oocyte development may cause reduced sensitivity to 

exogenous estrogens, such as EE2. A possible mechanism behind this correlation could be 

associated with estrogen receptors. Ligand binding to ERs is responsible for regulating 

the basic biology of estrogen-sensitive tissues; the use of selective agonists or antagonists 

can modulate this biology (Rich et al., 2002). Therefore, binding activity is an important 

factor to consider. ER competitive binding assays (assess a chemical’s ability to bind to 

an ER) between E2 and EE2 have been completed in other species and could be a valuable 

asset to understanding the mechanistic effects of EDCs in mummichog (Blair et al., 

2000). This could determine whether exogenous estrogens, such as EE2, are capable of 

acting through the same binding mechanisms as endogenous E2. Eventually this would 

demonstrate whether E2 has a higher binding affinity to ERs than EE2 in mummichog, 
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and thus is displacing EE2 from ERs more so than in other fish. Further studies could also 

be completed on the binding affinity of E2 and EE2 to the different ER subtypes within 

various tissues, to get a more thorough understanding of the mechanisms.  

Throughout this thesis, nuclear estrogen receptors were examined thoroughly. 

More work could be completed on membrane receptors and explore the pKA (protein 

kinase)/cAMP (cyclic AMP) pathway further. Ligand binding results in the exchange of 

GDP for GTP on the Galphas protein; its dissociation from the BY subunit complex 

stimulates the enzyme adenyl cyclase (AC) to catalyze the cyclization of ATP to generate 

cAMP and pyro-phosphate (Serezani et al., 2008). Intracellular levels of cAMP are 

tightly regulated by AC and the enzyme phosphodiesterase (PDE) (Serezani et al., 2008). 

An increase in intracellular cAMP levels is an important intracellular signaling 

mechanism involved in the regulation of gene expression (Chen et al., 1999); and 

elevation in intracellular cAMP levels in the ovary is also important in the regulation of 

steroid production, prior to GVBD in synergism with E2 (Lu et al., 2017). This leads to 

the question of whether or not there is an increase in cAMP levels in maturing 

mummichog follicles prior to maturation. A thorough characterization of the enzymes in 

this pathway and intracellular cAMP levels can provide insight on whether the link 

between reduced sensitivity to exogenous estrogens and high levels of E2 in maturing 

oocytes is correlated to a component of this pathway. 

There is also a possibility that the high E2 levels present in maturing mummichog 

oocytes could be a result of adaptation to the environment or due to its asynchronous 

spawning nature. In asynchronous spawners, the pre-vitellogenic, vitellogenic and 

maturation phases almost completely overlap, with vitellogenesis and maturation 
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occurring simultaneously; however, in synchronous spawners, the phases are clear with 

little or no overlap, and in group-synchronous spawners, phases are less clear than 

synchronous spawners and there is little overlap (Wooton and Smith, 2015). These 

different patterns in oocyte dynamics can be caused by either radically different control 

mechanisms for clear distinct phases, or a shift in temporal patterns for non-distinct 

phases (Wooton and Smith, 2015). It would be interesting to determine what selective 

factors cause these dynamic changes in oocyte development and maturation, through 

evolutionary analysis of the species mummichog. 

3.3 Integrative Nature of this Study 

This study expanded the current understanding of reproductive physiology in 

mummichog by linking endpoints across various biological levels. These include the 

whole organism (e.g., hormone levels from blood (plasma)), organ (e.g., gonad size, liver 

size, characterization of ovarian stage through histological analysis,), physiological (e.g., 

hormonal production from ovarian tissue and follicles) and molecular (e.g., gene 

expression of various steroidogenic enzymes and receptors in different tissues) levels. 

The endocrine system is one of the key signalling integrators in organisms; a thorough 

assessment across these biological levels enhances our understanding for mummichog 

and general fish reproductive physiology. This study also analyzed the effects of EE2 on 

mummichog ovarian follicles across maturation, which furthers our interpretation of EE2 

effects under various reproductive circumstances (e.g., at different stages of ovarian 

development).  

With the results from this study, we can develop a better understanding of 

mechanisms of action of EDCs and link these results to the field of toxicology. We can 
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utilize the results gained from this study to support the development of toxicological tools 

that investigate the mechanisms of action of EDCs, including those compounds that, 

similar to EE2, have estrogenic mechanisms of action. The knowledge of the mechanism 

of action of certain substances can also supplement other studies which have addressed 

these issues on a larger ecological scale. Through integration, the work from this study 

can be utilized to determine the effect of EDCs (such as EE2) at various biological levels 

across species, the mechanisms of action or tolerance of EE2 across species, and 

ultimately can lead to improving risk assessment of pollutants (such as exogenous 

estrogens) over a large scale, and protection of Canadian water systems. 
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